1
|
De Lecea L, Kilduff TS, Peyron C, Gao X,
et al: The hypocretins: hypothalamus-specific peptides with
neuroexcitatory activity. Proc Natl Acad Sci USA. 95:322–327.
1998.PubMed/NCBI
|
2
|
Sakurai T, Amemiya A, Ishii M, Matsuzaki
I, Chemelli RM, Tanaka H, et al: Orexins and orexin receptors: a
family of hypothalamic neuropeptides and G protein-coupled
receptors that regulate feeding behavior. Cell. 92:573–585. 1998.
View Article : Google Scholar
|
3
|
Karteris E and Randeva HS: Orexin
receptors and G-protein coupling: evidence for another
‘promiscuous’ seven transmembrane domain receptor. J Pharmacol Sci.
93:126–128. 2003.
|
4
|
Date Y, Ueta Y, Yamashita H, Yamaguchi H,
Matsukura S, Kangawa K, Sakurai T, Yanagisawa M and Nakazato M:
Orexins, orexigenic hypothalamic peptides, interact with autonomic,
neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA.
96:748–753. 1999. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nambu T, Sakurai T, Mizukami K, Hosoya Y,
Yanagisawa M and Goto K: Distribution of orexin neurons in the
adult rat brain. Brain Res. 827:243–260. 1999. View Article : Google Scholar : PubMed/NCBI
|
6
|
Peyron C, Tighe DK, van den Pol AN, de
Lecea L, Heller HC, Sutcliffe JG and Kilduff TS: Neurons containing
hypocretin (orexin) project to multiple neuronal systems. J
Neurosci. 18:9996–10015. 1998.PubMed/NCBI
|
7
|
Lin L, Faraco J, Li R, Kadotani H, Rogers
W, Lin X, Qiu X, de Jong PJ, Nishino S and Mignot E: The sleep
disorder canine narcolepsy is caused by a mutation in the
hypocretin (orexin) receptor 2 gene. Cell. 98:365–376. 1999.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Yokobori E, Kojima K, Azuma M, et al:
Stimulatory effect of intracerebroventricular administration of
orexin A on food intake in the zebrafish. Peptides. 32:1357–1362.
2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Spinazzi R, Rucinski M, Neri G,
Malendowicz LK and Nussdorfer GG: Preproorexin and orexin receptors
are expressed in cortisol-secreting adrenocortical adenomas, and
orexins stimulate in vitro cortisol secretion and growth of tumor
cells. J Clin Endocrinol Metab. 90:3544–3549. 2005. View Article : Google Scholar
|
10
|
Ramanjaneya M, Conner AC, Chen J,
Stanfield PR and Randeva HS: Orexins stimulate steroidogenic acute
regulatory protein expression through multiple signaling pathways
in human adrenal H295R cells. Endocrinology. 149:4106–4115. 2008.
View Article : Google Scholar
|
11
|
Beiras-Fernández A, Gallego R, Blanco M,
García-Caballero T, Diéguez C and Beiras A: Merkel cells, a new
localization of prepro-orexin and orexin receptors. J Anat.
204:117–122. 2004.PubMed/NCBI
|
12
|
Jöhren O, Neidert SJ, Kummer M, Dendorfer
A and Dominiak P: Prepro-orexin and orexin receptor mRNAs are
differentially expressed in peripheral tissues of male and female
rats. Endocrinology. 142:3324–3331. 2001.PubMed/NCBI
|
13
|
Lawlor MA and Alessi DR: PKB/Akt: A key
mediator of cell proliferation, survival and insulin response? J
Cell Sci. 114:2903–2910. 2001.PubMed/NCBI
|
14
|
Gross DN, Wan M and Birnbaum MJ: The role
of FOXO in the regulation of metabolism. Curr Diab Rep. 9:208–214.
2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Matsumoto M, Pocai A, Rossetti L, Depinho
RA and Accili D: Impaired regulation of hepatic glucose production
in mice lacking the forkhead transcription factor Foxo1 in liver.
Cell Metab. 6:208–216. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Accili D and Arden KC: FoxOs at the
crossroads of cellular metabolism, differentiation, and
transformation. Cell. 117:421–426. 2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yuan Z, Lehtinen MK, Merlo P, Villén J,
Gygi S and Bonni A: Regulation of neuronal cell death by MST1-FOXO1
signaling. J Biol Chem. 284:11285–11292. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kajihara T, Jones M, Fusi L, Takano M,
Feroze-Zaidi F, Pirianov G, Mehmet H, Ishihara O, Higham JM, Lam EW
and Brosens JJ: Differential expression of FOXO1 and FOXO3a confers
resistance to oxidative cell death upon endometrial
decidualization. Mol Endocrinol. 20:2444–2455. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shen B, Chao L and Chao J: Pivotal role of
JNK-dependent FOXO1 activation in downregulation of kallistatin
expression by oxidative stress. Am J Physiol Heart Circ Physiol.
298:H1048–H1054. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Thomas GV: mTOR and cancer: Reason for
dancing at the crossroads? Curr Opin Genet Dev. 16:78–84. 2006.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen CC, Jeon SM, Bhaskar PT, Nogueira V,
Sundararajan D, Tonic I, Park Y and Hay N: FoxOs inhibit mTORC1 and
activate Akt by inducing the expression of Sestrin3 and Rictor. Dev
Cell. 18:592–604. 2010. View Article : Google Scholar
|
22
|
Zoncu R, Efeyan A and Sabatini DM: mTOR:
from growth signal integration to cancer, diabetes and ageing. Nat
Rev Mol Cell Biol. 12:21–35. 2011. View
Article : Google Scholar : PubMed/NCBI
|
23
|
Chen ML, Xu PZ, Peng XD, Chen WS, Guzman
G, Yang X, Di Cristofano A, Pandolfi PP and Hay N: The deficiency
of Akt1 is sufficient to suppress tumor development in Ptenmice.
Genes Dev. 20:1569–1574. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hahn-Windgassen A, Nogueira V, Chen CC,
Skeen JE, Sonenbreg N and Hay N: Akt activates the mammalian target
of rapamycin by regulating cellular ATP level and AMPK activity. J
Biol Chem. 280:32081–32089. 2005. View Article : Google Scholar : PubMed/NCBI
|
25
|
Robey RB and Hay N: Mitochondrial
hexokinases: Guardians of the mitochondria. Cell Cycle. 4:654–658.
2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Holmqvist T, Johansson L, Ostman M, Ammoun
S, Akerman KE and Kukkonen JP: OX1 orexin receptors couple to
adenylyl cyclase regulation via multiple mechanisms. J Biol Chem.
280:6570–6579. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Malendowicz LK, Tortorella C and
Nussdorfer GG: Orexins stimulate corticosterone secretion of rat
adrenocortical cells, through the activation of the adenylate
cyclase-dependent signaling cascade. J Steroid Biochem Mol Biol.
70:185–188. 1999. View Article : Google Scholar
|
28
|
López M1, Señarís R, Gallego R,
García-Caballero T, Lago F, Seoane L, Casanueva F and Diéguez C:
Orexin receptors are expressed in the adrenal medulla of the rat.
Endocrinology. 140:5991–5994. 1999.PubMed/NCBI
|
29
|
Göncz E, Strowski MZ, Grötzinger C, Nowak
KW, Kaczmarek P, Sassek M, Mergler S, El-Zayat BF, Theodoropoulou
M, Stalla GK, Wiedenmann B and Plöckinger U: Orexin-A inhibits
glucagon secretion and gene expression through a Foxo1-dependent
pathway. Endocrinology. 149:1618–1626. 2008.PubMed/NCBI
|
30
|
Ramanjaneya M1, Conner AC, Chen J, Kumar
P, Brown JE, Jöhren O, Lehnert H, Stanfield PR and Randeva HS:
Orexin-stimulated MAP kinase cascades are activated through
multiple G-protein signaling pathways in human H295R adrenocortical
cells: diverse roles for orexins A and B. J Endocrinol.
202:249–261. 2009. View Article : Google Scholar
|
31
|
Zhu Y, Miwa Y, Yamanaka A, Yada T,
Shibahara M, Abe Y, Sakurai T and Goto K: Orexin receptor type-1
couples exclusively to pertussis toxin insensitive G-proteins,
while orexin receptor type-2 couples to both pertussis
toxin-sensitive and -insensitive G-proteins. J Pharmacol Sci.
92:259–266. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Skeen JE, Bhaskar PT, Chen CC, Chen WS,
Peng XD, Nogueira V, Hahn-Windgassen A, Kiyokawa H and Hay N: Akt
deficiency impairs normal cell proliferation and suppresses
oncogenesis in a p53-independent and mTORC1-dependent manner.
Cancer Cell. 10:269–280. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kapahi P, Chen D, Rogers AN, Katewa SD, Li
PW, Thomas EL and Kockel L: With TOR, less is more: a key role for
the conserved nutrient-sensing TOR pathway in aging. Cell Metab.
11:453–465. 2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang X and Proud CG: Nutrient control of
TORC1, a cell-cycle regulator. Trends Cell Biol. 19:260–267. 2009.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Gera JF, Mellinghoff IK, Shi Y, Rettig MB,
Tran C, Hsu JH, Sawyers CL and Lichtenstein AK: AKT activity
determines sensitivity to mammalian target of rapamycin (mTOR)
inhibitors by regulating cyclin D1 and c-myc expression. J Biol
Chem. 279:2737–2746. 2004. View Article : Google Scholar : PubMed/NCBI
|
36
|
Buteau J and Accili D: Regulation of
pancreatic beta-cell function by the forkhead protein FoxO1.
Diabetes Obes Metab. 9:140–146. 2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cheng Z and White MF: Targeting forkhead
box O1 from the concept to metabolic diseases: lessons from mouse
models. Antiox Redox Signal. 14:649–661. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Puthanveetil P, Wan A and Rodrigues B:
FoxO1 is crucial for sustaining cardiomyocyte metabolism and cell
survival. Cardiovasc Res. 97:393–403. 2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jünger MA, Rintelen F, Stocker H,
Wasserman JD, Végh M, Radimerski T, Greenberg ME and Hafen E: The
Drosophila forkhead transcription factor FOXO mediates the
reduction in cell number associated with reduced insulin signaling.
J Biol. 2:202003.
|
40
|
Puig O, Marr MT, Ruhf ML and Tjian R:
Control of cell number by Drosophila FOXO: downstream and
feedback regulation of the insulin receptor pathway. Genes Dev.
17:2006–2020. 2003.
|
41
|
Zeng FY, Cui J, Liu L and Chen T:
PAX3-FKHR sensitizes human alveolar rhabdomyosarcoma cells to
camptothecin-mediated growth inhibition and apoptosis. Cancer Lett.
284:157–164. 2009. View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu P, Kao TP and Huang H: CDK1 promotes
cell proliferation and survival via phosphorylation and inhibition
of FOXO1 transcription factor. Oncogene. 27:4733–4744. 2008.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Fendler A1, Jung M, Stephan C,
Erbersdobler A, Jung K and Yousef GM: The antiapoptotic function of
miR-96 in prostate cancer by inhibition of FOXO1. PLoS One.
8:e808072013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Harada H, Andersen JS, Mann M, Terada N
and Korsmeyer SJ: p70S6 kinase signals cell survival as well as
growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad
Sci USA. 98:9666–9670. 2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
Budanov AV and Karin M: p53 target genes
sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling.
Cell. 134:451–460. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hay N: Interplay between FOXO, TOR, and
Akt. Biochim Biophys Acta. 1813:1965–1970. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Dansen TB and Burgering BM: Unravelling
the tumor- suppressive functions of FOXO proteins. Trends Cell
Biol. 18:421–429. 2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bhaskar PT and Hay N: The two TORCs and
Akt. Dev Cell. 12:487–502. 2007. View Article : Google Scholar : PubMed/NCBI
|