1
|
Montefort S, Herbert CA, Robinson C and
Holgate ST: The bronchial epithelium as a target for inflammatory
attack in asthma. Clin Exp Allergy. 22:511–520. 1992. View Article : Google Scholar : PubMed/NCBI
|
2
|
Rietschel ET, Kirikae T, Schade FU, Mamat
U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Padova
FD, Schreier M and Brade H: Bacterial endotoxin: molecular
relationships of structure to activity and function. FASEB J.
8:217–225. 1994.PubMed/NCBI
|
3
|
Michel O: Role of lipopolysaccharide (LPS)
in asthma and other pulmonary conditions. J Endotoxin Res.
9:293–300. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Striz I, Mio T, Adachi Y, Bazil V and
Rennard S: The CD14 molecule participates in regulation of IL-8 and
IL-6 release by bronchial epithelial cells. Immunol Lett.
62:177–181. 1998. View Article : Google Scholar : PubMed/NCBI
|
5
|
Matsusaka T, Fujikawa K, Nishio Y, Mukaida
N, Matsushima K, Kishimoto T and Akira S: Transcription factors
NF-IL6 and NF-kappa B synergistically activate transcription of the
inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl
Acad Sci USA. 90:10193–10197. 1993. View Article : Google Scholar : PubMed/NCBI
|
6
|
Moon RT, Bowerman B, Boutros M and
Perrimon N: The promise and perils of Wnt signaling through
beta-catenin. Science. 296:1644–1646. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bae S, Lee H, Choi BW, Lee HK, Chung SI,
Kim W, Kim K, Seo SJ, Kim DS, Kim SM and Yoon Y: Beta-catenin
promoter polymorphism is associated with asthma risk in Korean
subjects. Clin Biochem. 45:1187–1191. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
|
9
|
Cadigan KM and Liu YI: Wnt signaling:
complexity at the surface. J Cell Sci. 119:395–402. 2006.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Willert K and Nusse R: Beta-catenin: a key
mediator of Wnt signaling. Curr Opin Genet Dev. 8:95–102. 1998.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Profita M, Bonanno A, Montalbano AM,
Ferraro M, Siena L, Bruno A, Girbino S, Albano GD, Casarosa P,
Pieper MP and Gjomarkaj M: Cigarette smoke extract activates human
bronchial epithelial cells affecting non-neuronal cholinergic
system signalling in vitro. Life Sci. 89:36–43. 2011. View Article : Google Scholar
|
12
|
Tal TL, Simmons SO, Silbajoris R, Dailey
L, Cho SH, Ramabhadran R, Linak W, Reed W, Bromberg PA and Samet
JM: Differential transcriptional regulation of IL-8 expression by
human airway epithelial cells exposed to diesel exhaust particles.
Toxicol Appl Pharmacol. 243:46–54. 2010. View Article : Google Scholar
|
13
|
Pylkkanen L, Stockmann-Juvala H, Alenius
H, Husgafvel-Pursiainen K and Savolainen K: Wood dusts induce the
production of reactive oxygen species and caspase-3 activity in
human bronchial epithelial cells. Toxicology. 262:265–270. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Bossios A, Gourgiotis D, Skevaki CL,
Saxoni-Papageorgiou P, Lotvall J, Psarras S, Karpathios T,
Constandopoulos AG, Johnston SL and Papadopoulos NG: Rhinovirus
infection and house dust mite exposure synergize in inducing
bronchial epithelial cell interleukin-8 release. Clin Exp Allergy.
38:1615–1626. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ishibashi Y and Nishikawa A: Role of
nuclear factor-kappa B in the regulation of intercellular adhesion
molecule 1 after infection of human bronchial epithelial cells by
Bordetella pertussis. Microb Pathog. 35:169–177. 2003.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Thomas LH, Friedland JS, Sharland M and
Becker S: Respiratory syncytial virus-induced RANTES production
from human bronchial epithelial cells is dependent on nuclear
factor-kappa B nuclear binding and is inhibited by
adenovirus-mediated expression of inhibitor of kappa B alpha. J
Immunol. 161:1007–1016. 1998.
|
17
|
Venkatakrishnan A, Stecenko AA, King G,
Blackwell TR, Brigham KL, Christman JW and Blackwell TS:
Exaggerated activation of nuclear factor-kappaB and altered
IkappaB-beta processing in cystic fibrosis bronchial epithelial
cells. Am J Respir Cell Mol Biol. 23:396–403. 2000. View Article : Google Scholar
|
18
|
Desaki M, Okazaki H, Sunazuka T, Omura S,
Yamamoto K and Takizawa H: Molecular mechanisms of
anti-inflammatory action of erythromycin in human bronchial
epithelial cells: possible role in the signaling pathway that
regulates nuclear factor-kappaB activation. Antimicrob Agents
Chemother. 48:1581–1585. 2004. View Article : Google Scholar
|
19
|
Clevers H and Nusse R: Wnt/beta-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Polakis P: The many ways of Wnt in cancer.
Curr Opin Genet Dev. 17:45–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
21
|
Duan Y, Liao AP, Kuppireddi S, Ye Z,
Ciancio MJ and Sun J: beta-Catenin activity negatively regulates
bacteria-induced inflammation. Lab Invest. 87:613–624.
2007.PubMed/NCBI
|
22
|
Kim JS, Yeo S, Shin DG, Bae YS, Lee JJ,
Chin BR, Lee CH and Baek SH: Glycogen synthase kinase 3beta and
beta-catenin pathway is involved in toll-like receptor 4-mediated
NADPH oxidase 1 expression in macrophages. FEBS J. 277:2830–2837.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jang J, Ha JH, Kim SM, Kim W, Kim K, Chung
SI and Yoon Y: β-catenin mediates the inflammatory cytokine
expression induced by the Der p 1 house dust mite allergen. Mol Med
Rep. 9:633–638. 2014.
|