1
|
McLean L and Patel T: Racial and ethnic
variations in the epidemiology of intrahepatic cholangiocarcinoma
in the United States. Liver Int. 26:1047–1053. 2006. View Article : Google Scholar
|
2
|
Khan SA, Davidson BR, Goldin R, Pereira
SP, Rosenberg WM, et al: Guidelines for the diagnosis and treatment
of cholangiocarcinoma: consensus document. Gut. 51(Suppl 6):
VI1–VI9. 2002.PubMed/NCBI
|
3
|
Endo I, Gonen M, Yopp AC, Dalal KM, Zhou
Q, et al: Intrahepatic cholangiocarcinoma: rising frequency,
improved survival, and determinants of outcome after resection. Ann
Surg. 248:84–96. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ong CK, Subimerb C, Pairojkul C, Wongkham
S, Cutcutache I, et al: Exome sequencing of liver fluke-associated
cholangiocarcinoma. Nat Genet. 44:690–693. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gu TL, Deng X, Huang F, Tucker M, Crosby
K, et al: Survey of tyrosine kinase signaling reveals ROS kinase
fusions in human cholangiocarcinoma. PLoS One. 6:e156402011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Charest A, Lane K, McMahon K, Park J,
Preisinger E, et al: Fusion of FIG to the receptor tyrosine kinase
ROS in a glioblastoma with an interstitial del(6) (q21q21). Genes
Chromosomes Cancer. 37:58–71. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Saborowski A, Saborowski M, Davare MA,
Druker BJ, Klimstra DS and Lowe SW: Mouse model of intrahepatic
cholangiocarcinoma validates FIG-ROS as a potent fusion oncogene
and therapeutic target. Proc Natl Acad Sci USA. 110:19513–19518.
2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shaw AT, Camidge DR, Engelman JA, et al:
Clinical activity of crizotinib in advanced non-small cell lung
cancer (NSCLC) harboring ROS1 gene rearrangement. J Clin Oncol.
30:abstr 7508. 2012.
|
9
|
Sirica AE, Zhang Z, Lai GH, Asano T, Shen
XN, et al: A novel ‘patient-like’ model of cholangiocarcinoma
progression based on bile duct inoculation of tumorigenic rat
cholangiocyte cell lines. Hepatology. 47:1178–1190. 2008.
|
10
|
Malhi H and Gores GJ: Cholangiocarcinoma:
modern advances in understanding a deadly old disease. J Hepatol.
45:856–867. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sirica AE: Cholangiocarcinoma: molecular
targeting strategies for chemoprevention and therapy. Hepatology.
41:5–15. 2005. View Article : Google Scholar
|
12
|
Malhi H and Gores GJ: Cholangiocarcinoma:
modern advances in understanding a deadly old disease. J Hepatol.
45:856–867. 2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Takeuchi K, Soda M, Togashi Y, Suzuki R,
Sakata S, et al: RET, ROS1 and ALK fusions in lung cancer. Nat Med.
18:378–381. 2012. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Lira ME, Choi YL, Lim SM, Deng S, Huang D,
et al: A Single-Tube Multiplexed Assay for Detecting ALK, ROS1, and
RET Fusions in Lung Cancer. J Mol Diagn. 16:229–243. 2014.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Bergethon K, Shaw AT, Ou SH, Katayama R,
Lovly CM, et al: ROS1 rearrangements define a unique molecular
class of lung cancers. J Clin Oncol. 30:863–870. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nagarajan L, Louie E, Tsujimoto Y,
Balduzzi PC, Huebner K and Croce CM: The human c-ros gene (ROS) is
located at chromosome region 6q16–6q22. Proc Natl Acad Sci USA.
83:6568–6572. 1986.
|
17
|
Jun HJ, Woolfenden S, Coven S, Lane K,
Bronson R, et al: Epigenetic regulation of c-ROS receptor tyrosine
kinase expression in malignant gliomas. Cancer Res. 69:2180–2184.
2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rikova K, Guo A, Zeng Q, Possemato A, Yu
J, et al: Global survey of phosphotyrosine signaling identifies
oncogenic kinases in lung cancer. Cell. 131:1190–1203. 2007.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Charest A, Wilker EW, McLaughlin ME, Lane
K, Gowda R, et al: ROS fusion tyrosine kinase activates a SH2
domain-containing phosphatase-2/phosphatidylinositol
3-kinase/mammalian target of rapamycin signaling axis to form
glioblastoma in mice. Cancer Res. 66:7473–7481. 2006. View Article : Google Scholar : PubMed/NCBI
|
20
|
Davare MA, Saborowski A, Eide CA, Tognon
C, Smith RL, et al: Foretinib is a potent inhibitor of oncogenic
ROS1 fusion proteins. Proc Natl Acad Sci USA. 110:19519–19524.
2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Farnebo M, Bykov VJ and Wiman KG: The p53
tumor suppressor: a master regulator of diverse cellular processes
and therapeutic target in cancer. Biochem Biophys Res Commun.
396:85–89. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mork CN, Faller DV and Spanjaard RA: A
mechanistic approach to anticancer therapy: targeting the cell
cycle with histone deacetylase inhibitors. Curr Pharm Des.
11:1091–1104. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Davies KD, Mahale S, Astling DP, Aisner
DL, Le AT, et al: Resistance to ROS1 inhibition mediated by EGFR
pathway activation in non-small cell lung cancer. PLoS One.
8:e822362013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Acquaviva J, Wong R and Charest A: The
multifaceted roles of the receptor tyrosine kinase ROS in
development and cancer. Biochim Biophys Acta. 1795:37–52.
2009.PubMed/NCBI
|
25
|
Fava G, Alpini G, Rychlicki C, Saccomanno
S, DeMorrow S, et al: Leptin enhances cholangiocarcinoma cell
growth. Cancer Res. 68:6752–6761. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yoon H, Min JK, Lee JW, Kim DG and Hong
HJ: Acquisition of chemoresistance in intrahepatic
cholangiocarcinoma cells by activation of AKT and extracellular
signal-regulated kinase (ERK)1/2. Biochem Biophys Res Commun.
405:333–337. 2011. View Article : Google Scholar : PubMed/NCBI
|