1
|
Abraham NG and Kappas A: Pharmacological
and clinical aspects of heme oxygenase. Pharmacol Rev. 60:79–127.
2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Deshane J, Wright M and Agarwal A: Heme
oxygenase-1 expression in disease states. Acta Biochim Pol.
52:273–284. 2005.PubMed/NCBI
|
3
|
Yoshida T and Kikuchi G: Sequence of the
reaction of heme catabolism catalyzed by the microsomal heme
oxygenase system. FEBS Lett. 48:256–261. 1974. View Article : Google Scholar : PubMed/NCBI
|
4
|
Liu Y, Moënne-Loccoz P, Loehr TM and Ortiz
de Montellano PR: Heme oxygenase-1, intermediates in verdoheme
formation and the requirement for reduction equivalents. J Biol
Chem. 272:6909–6917. 1997. View Article : Google Scholar : PubMed/NCBI
|
5
|
Maines MD: The heme oxygenase system: a
regulator of second messenger gases. Annu Rev Pharmacol Toxicol.
37:517–554. 1997. View Article : Google Scholar : PubMed/NCBI
|
6
|
Durante W: Heme oxygenase-1 in growth
control and its clinical application to vascular disease. J Cell
Physiol. 195:373–382. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Abraham NG and Kappas A: Heme oxygenase
and the cardiovascular-renal system. Free Radic Biol Med. 39:1–25.
2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Immenschuh S and Ramadori G: Gene
regulation of heme oxygenase-1 as a therapeutic target. Biochem
Pharmacol. 60:1121–1128. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Goodman AI, Olszanecki R, Yang LM, et al:
Heme oxygenase-1 protects against radiocontrast-induced acute
kidney injury by regulating anti-apoptotic proteins. Kidney Int.
72:945–953. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Agarwal A, Balla J, Alam J, Croatt AJ and
Nath KA: Induction of heme oxygenase in toxic renal injury: a
protective role in cisplatin nephrotoxicity in the rat. Kidney Int.
48:1298–1307. 1995. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gonçalves GM, Cenedeze MA, Feitoza CQ, et
al: The role of heme oxygenase-1 in rapamycin-induced renal
dysfunction after ischemia and reperfusion injury. Kidney Int.
70:1742–1749. 2006.PubMed/NCBI
|
12
|
Katori M, Anselmo DM, Busuttil RW and
Kupiec-Weglinski JW: A novel strategy against ischemia and
reperfusion injury: cytoprotection with heme oxygenase system.
Transpl Immunol. 9:227–233. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nath KA, Balla G, Vercellotti GM, et al:
Induction of heme oxygenase is a rapid, protective response in
rhabdomyolysis in the rat. J Clin Invest. 90:267–270. 1992.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Inguaggiato P, Gonzalez-Michaca L, Croatt
AJ, Haggard JJ, Alam J and Nath KA: Cellular overexpression of heme
oxygenase-1 up-regulates p21 and confers resistance to apoptosis.
Kidney Int. 60:2181–2191. 2001. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gonzalez-Michaca L, Farrugia G, Croatt AJ,
Alam J and Nath KA: Heme: a determinant of life and death in renal
tubular epithelial cells. Am J Physiol Renal Physiol.
286:F370–F377. 2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Megyesi J, Safirstein RL and Price PM:
Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the
course of cisplatin-induced acute renal failure. J Clin Invest.
101:777–782. 1998. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Zhou H, Kato A, Yasuda H, et al: The
induction of cell cycle regulatory and DNA repair proteins in
cisplatin-induced acute renal failure. Toxicol Appl Pharmacol.
200:111–120. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhou H, Fujigaki Y, Kato A, et al:
Inhibition of p21 modifies the response of cortical proximal
tubules to cisplatin in rats. Am J Physiol Renal Physiol.
291:F225–F235. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nowak G, Price PM and Schnellmann RG: Lack
of a functional p21WAF1/CIP1 gene accelerates caspase-independent
apoptosis induced by cisplatin in renal cells. Am J Physiol Renal
Physiol. 285:F440–F450. 2003.PubMed/NCBI
|
20
|
Price PM, Safirstein RL and Megyesi J:
Protection of renal cells from cisplatin toxicity by cell cycle
inhibitors. Am J Physiol Renal Physiol. 286:F378–F384. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu F, Megyesi J, Safirstein RL and Price
PM: Identification of the functional domain of p21(WAF1/CIP1) that
protects cells from cisplatin cytotoxicity. Am J Physiol Renal
Physiol. 289:F514–F520. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Megyesi J, Andrade L, Vieira JM Jr,
Safirstein RL and Price PM: Coordination of the cell cycle is an
important determinant of the syndrome of acute renal failure. Am J
Physiol Renal Physiol. 283:F810–F816. 2002. View Article : Google Scholar : PubMed/NCBI
|
23
|
Miyaji T, Kato A, Yasuda H, Fujigaki Y and
Hishida A: Role of the increase in p21 in cisplatin-induced acute
renal failure in rats. J Am Soc Nephrol. 12:900–908.
2001.PubMed/NCBI
|
24
|
Nath KA: Provenance of the protective
property of p21. Am J Physiol Renal Physiol. 289:F512–F513. 2005.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hengst L and Reed SI: Inhibitors of the
Cip/Kip family. Curr Top Microbiol Immunol. 227:25–41. 1998.
|
26
|
Sherr CJ and Roberts JM: Inhibitors of
mammalian G1 cyclin-dependent kinases. Genes Dev. 9:1149–1163.
1995. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang Y, Yuan L, Fu L, Liu C, Liu D and
Mei C: Overexpression of p18INK4C in LLC-PK1 cells increases the
resistance to cisplatin-induced apoptosis. Pediatr Nephrol.
26:1291–1301. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yu F, Megyesi J and Price PM: Cytoplasmic
initiation of cisplatin cytotoxicity. Am J Physiol Renal Physiol.
295:F44–F52. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yuan Y, Shen H, Franklin DS, et al: In
vivo self-renewing divisions of haematopoietic stem cells are
increased in the absence of the early G1-phase inhibitor, p18INK4C.
Nat Cell Biol. 6:436–442. 2004. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Franklin DS, Godfrey VL, Lee H, et al: CDK
inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways
to collaboratively suppress pituitary tumorigenesis. Genes Dev.
12:2899–2911. 1998. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shimizu H, Takahashi T, Suzuki T, et al:
Protective effect of heme oxygenase induction in ischemic acute
renal failure. Crit Care Med. 28:809–817. 2000. View Article : Google Scholar : PubMed/NCBI
|
32
|
Shankland SJ and Wolf G: Cell cycle
regulatory proteins in renal disease: role in hypertrophy,
proliferation, and apoptosis. Am J Physiol Renal Physiol.
278:F515–F529. 2000.PubMed/NCBI
|
33
|
Weinert T: DNA damage and checkpoint
pathways: molecular anatomy and interactions with repair. Cell.
94:555–558. 1998. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cánepa ET, Scassa ME, Ceruti JM, et al:
INK4 proteins, a family of mammalian CDK inhibitors with novel
biological functions. IUBMB Life. 59:419–426. 2007.PubMed/NCBI
|
35
|
Shiraishi F, Curtis LM, Truong L, et al:
Heme oxygenase-1 gene ablation or expression modulates
cisplatin-induced renal tubular apoptosis. Am J Physiol Renal
Physiol. 278:F726–F736. 2000.PubMed/NCBI
|
36
|
Park HM, Cho JM, Lee HR, Shim GS and Kwak
MK: Renal protection by 3H-1,2-dithiole-3-thione against cisplatin
through the Nrf2-antioxidant pathway. Biochem Pharmacol.
76:597–607. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yoon HY, Kang NI, Lee HK, Jang KY, Park JW
and Park BH: Sulforaphane protects kidneys against
ischemia-reperfusion injury through induction of the Nrf2-dependent
phase 2 enzyme. Biochem Pharmacol. 75:2214–2223. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gueler F, Park JK, Rong S, et al: Statins
attenuate ischemia-reperfusion injury by inducing heme oxygenase-1
in infiltrating macrophages. Am J Pathol. 170:1192–1199. 2007.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Watanabe M, de Moura Neiva LB, da Costa
Santos CX, Martins Laurindo FR and de Fátima Fernandes Vattimo M:
Isoflavone and the heme oxygenase system in ischemic acute kidney
injury in rats. Food Chem Toxicol. 45:2366–2371. 2007. View Article : Google Scholar : PubMed/NCBI
|
40
|
Agarwal A and Nick HS: Renal response to
tissue injury: lessons from heme oxygenase-1 GeneAblation and
expression. J Am Soc Nephrol. 11:965–973. 2000.PubMed/NCBI
|
41
|
Zager RA: Rhabdomyolysis and
myohemoglobinuric acute renal failure. Kidney Int. 49:314–326.
1996. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hill-Kapturczak N, Chang SH and Agarwal A:
Heme oxygenase and the kidney. DNA Cell Biol. 21:307–321. 2002.
View Article : Google Scholar
|
43
|
Nath KA, Haggard JJ, Croatt AJ, Grande JP,
Poss KD and Alam J: The indispensability of heme oxygenase-1 in
protecting against acute heme protein-induced toxicity in vivo. Am
J Pathol. 156:1527–1535. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Abraham NG, Lin JH, Schwartzman ML, Levere
RD and Shibahara S: The physiological significance of heme
oxygenase. Int J Biochem. 20:543–558. 1988. View Article : Google Scholar : PubMed/NCBI
|
45
|
Miralem T, Hu Z, Torno MD, Lelli KM and
Maines MD: Small interference RNA-mediated gene silencing of human
biliverdin reductase, but not that of heme oxygenase-1, attenuates
arsenite-mediated induction of the oxygenase and increases
apoptosis in 293A kidney cells. J Biol Chem. 280:17084–17092. 2005.
View Article : Google Scholar
|
46
|
Motterlini R: Carbon monoxide-releasing
molecules (CO-RMs): vasodilatory, anti-ischaemic and
anti-inflammatory activities. Biochem Soc Trans. 35:1142–1146.
2007. View Article : Google Scholar : PubMed/NCBI
|