1
|
Stanton MJ, Dutta S, Polavaram NS, Roy S,
Muders MH and Datta K: Angiogenic growth factor axis in autophagy
regulation. Autophagy. 9:789–790. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kuma A, Hatano M, Matsui M, et al: The
role of autophagy during the early neonatal starvation period.
Nature. 432:1032–1036. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pouyssegur J, Dayan F and Mazure NM:
Hypoxia signalling in cancer and approaches to enforce tumour
regression. Nature. 441:437–443. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Guo JY, Xia B and White E:
Autophagy-mediated tumor promotion. Cell. 155:1216–1219. 2013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Wei H and Guan JL: Pro-tumorigenic
function of autophagy in mammary oncogenesis. Autophagy. 8:129–131.
2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ye L, Zhao X, Lu J, Qian G, Zheng JC and
Ge S: Knockdown of TIGAR by RNA interference induces apoptosis and
autophagy in HepG2 hepatocellular carcinoma cells. Biochem Biophys
Res Commun. 437:300–306. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nepal S and Park PH: Activation of
autophagy by globular adiponectin attenuates ethanol-induced
apoptosis in HepG2 cells: involvement of AMPK/FoxO3A axis. Biochim
Biophys Acta. 1833:2111–2125. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang DM, Liu JS, Deng LJ, et al: a
natural bufadienolide from toad venom, induces apoptosis and
autophagy in human hepatocellular carcinoma cells through
inhibition of PI3K/Akt/mTOR pathway. Carcinogenesis. 34:1331–1342.
2013. View Article : Google Scholar
|
9
|
Wang EY, Gang H, Aviv Y, Dhingra R,
Margulets V and Kirshenbaum LA: p53 mediates autophagy and cell
death by a mechanism contingent on Bnip3. Hypertension. 62:70–77.
2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Okamoto T, Schlegel A, Scherer PE and
Lisanti MP: Caveolins, a family of scaffolding proteins for
organizing ‘preassembled signaling complexes’ at the plasma
membrane. J Biol Chem. 273:5419–5422. 1998.
|
11
|
Gonzalez MI, Krizman-Genda E and Robinson
MB: Caveolin-1 regulates the delivery and endocytosis of the
glutamate transporter, excitatory amino acid carrier 1. J Biol
Chem. 282:29855–29865. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bosch M, Mari M, Herms A, et al:
Caveolin-1 deficiency causes cholesterol-dependent mitochondrial
dysfunction and apoptotic susceptibility. Curr Biol. 21:681–686.
2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Svensson KJ, Christianson HC, Wittrup A,
et al: Exosome uptake depends on ERK1/2-heat shock protein 27
signaling and lipid Raft-mediated endocytosis negatively regulated
by caveolin-1. J Biol Chem. 288:17713–17724. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kannan A, Krishnan A, Ali M, Subramaniam
S, Halagowder D and Sivasithamparam ND: Caveolin-1 promotes gastric
cancer progression by up-regulating epithelial to mesenchymal
transition by crosstalk of signalling mechanisms under hypoxic
condition. Eur J Cancer. 50:204–215. 2014. View Article : Google Scholar
|
15
|
Ayala G, Morello M, Frolov A, et al: Loss
of caveolin-1 in prostate cancer stroma correlates with reduced
relapse-free survival and is functionally relevant to tumour
progression. J Pathol. 231:77–87. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ha TK and Ch SG: CAV1/caveolin 1 enhances
aerobic glycolysis in colon cancer cells via activation of
SLC2A3/GLUT3 transcription. Autophagy. 8:1684–1685. 2012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Guo YH, Hernandez I, Isermann B, et al:
Caveolin-1-dependent apoptosis induced by fibrin degradation
products. Blood. 113:4431–4439. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jiang QF, Wu TT, Yang JY, et al:
17β-estradiol promotes the invasion and migration of nuclear
estrogen receptor-negative breast cancer cells through cross-talk
between GPER1 and CXCR1. J Steroid Biochem Mol Biol. 138:314–324.
2013.
|
19
|
Fester L, Labitzke J, Hinz R, et al:
Estradiol responsiveness of synaptopodin in hippocampal neurons is
mediated by estrogen receptor β. J Steroid Biochem Mol Biol.
138:455–461. 2013.PubMed/NCBI
|
20
|
Rapid regulation of K(ATP) channel
activity by 17{beta}-estradiol in pancreatic {beta}-cells involves
the estrogen receptor {beta} and the atrial natriuretic peptide
receptor. Mol Endocrinol. 23:1973–1982. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yang YH, Chen K, Li B, et al: Estradiol
inhibits osteoblast apoptosis via promotion of autophagy through
the ER-ERK-mTOR pathway. Apoptosis. 18:1363–1375. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen CW, Chen TY, Tsai KL, et al:
Inhibition of autophagy as a therapeutic strategy of iron-induced
brain injury after hemorrhage. Autophagy. 8:1510–1520. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Visagie MH and Joubert AM: The in vitro
effects of 2-methoxyestradiol-bis-sulphamate on cell numbers,
membrane integrity and cell morphology, and the possible induction
of apoptosis and autophagy in a non-tumorigenic breast epithelial
cell line. Cell Mol Biol Lett. 15:564–581. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kabeya Y, Mizushima N, Ueno T, et al: LC3,
a mammalian homologue of yeast Apg8p, is localized in autophagosome
membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mizushima N, Sugita H, Yoshimori T and
Ohsumi Y: A new protein conjugation system in human. The
counterpart of the yeast Apg12p conjugation system essential for
autophagy. J Biol Chem. 273:33889–33892. 1998. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kametaka S, Okano T, Ohsumi M and Ohsumi
Y: Apg14p and Apg6/Vps30p form a protein complex essential for
autophagy in the yeast, Saccharomyces cerevisiae. J Biol
Chem. 273:22284–22291. 1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ryter SW, Lam HC, Chen ZH and Choi AM:
Deadly triplex: smoke, autophagy and apoptosis. Autophagy.
7:436–437. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ha TK, Her NG, Lee MG, et al: Caveolin-1
increases aerobic glycolysis in colorectal cancers by stimulating
HMGA1-mediated GLUT3 transcription. Cancer Res. 72:4097–4109. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Meyer C, Liu Y, Kaul A, Peipe I and Dooley
S: Caveolin-1 abrogates TGF-β mediated hepatocyte apoptosis. Cell
Death Dis. 4:e4662013.PubMed/NCBI
|
30
|
Yang X, Xiong H, Guan ZZ, et al: Higher
expression of Caveolin-1 inhibits human small cell lung cancer
(SCLC) apoptosis in vitro. Cancer Invest. 30:453–462. 2012.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Feng H, Guo L, Song Z, Gao H, et al:
Caveolin-1 protects against sepsis by modulating inflammatory
response, alleviating bacterial burden, and suppressing thymocyte
apoptosis. J Biol Chem. 285:25154–25160. 2010. View Article : Google Scholar
|
32
|
Ingueneau C, Huynh UD, Marcheix B, et al:
TRPC1 is regulated by caveolin-1 and is involved in oxidized
LDL-induced apoptosis of vascular smooth muscle cells. J Cell Mol
Med. 13:1620–1631. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pongjit K and Chanvorachote P: Caveolin-1
sensitizes cisplatin-induced lung cancer cell apoptosis via
superoxide anion-dependent mechanism. Mol Cell Biochem.
358:365–373. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Huang J, Liu K, Yu Y, et al: Targeting
HMGB1-mediated autophagy as a novel therapeutic strategy for
osteosarcoma. Autophagy. 8:275–277. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kang R, Livesey KM, Zeh HJ III, Lotze MT
and Tang D: HMGB1 as an autophagy sensor in oxidative stress.
Autophagy. 7:904–906. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Tang D, Kang R, Livesey KM, et al:
Endogenous HMGB1 regulates autophagy. J Cell Biol. 190:881–892.
2010. View Article : Google Scholar
|