1
|
Salminen A, Ojala J and Kaarniranta K:
Apoptosis and aging: increased resistance to apoptosis enhances the
aging process. Cell Mol Life Sci. 68:1021–1031. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Loeser RF: Aging and osteoarthritis: the
role of chondrocyte senescence and aging changes in the cartilage
matrix. Osteoarthritis Cartilage. 17:971–979. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Horton WE Jr, Feng L and Adams C:
Chondrocyte apoptosis in development, aging and disease. Matrix
Biol. 17:107–115. 1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kühn K, D’Lima DD, Hashimoto S and Lotz M:
Cell death in cartilage. Osteoarthritis Cartilage. 12:1–16.
2004.
|
5
|
Martin JA and Buckwalter JA: Aging,
articular cartilage chondrocyte senescence and osteoarthritis.
Biogerontology. 3:257–264. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Martin JA and Buckwalter JA: Telomere
erosion and senescence in human articular cartilage chondrocytes. J
Gerontol A Biol Sci Med Sci. 56:B172–B179. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Aigner T, Hemmel M, Neureiter D, Gebhard
PM, Zeiler G, Kirchner T and McKenna L: Apoptotic cell death is not
a widespread phenomenon in normal aging and osteoarthritis human
articular knee cartilage: a study of proliferation, programmed cell
death (apoptosis), and viability of chondrocytes in normal and
osteoarthritic human knee cartilage. Arthritis Rheum. 44:1304–1312.
2001.
|
8
|
Hashimoto S, Ochs RL, Komiya S and Lotz M:
Linkage of chondrocyte apoptosis and cartilage degradation in human
osteoarthritis. Arthritis Rheum. 41:1632–1638. 1998. View Article : Google Scholar : PubMed/NCBI
|
9
|
Blanco FJ, Guitian R, Vázquez-Martul E, de
Toro FJ and Galdo F: Osteoarthritis chondrocytes die by apoptosis.
A possible pathway for osteoarthritis pathology. Arthritis Rheum.
41:284–289. 1998. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jallali N, Ridha H, Thrasivoulou C,
Underwood C, Butler PE and Cowen T: Vulnerability to ROS-induced
cell death in ageing articular cartilage: the role of antioxidant
enzyme activity. Osteoarthritis Cartilage. 13:614–622. 2005.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Muller M: Cellular senescence: molecular
mechanisms, in vivo significance, and redox considerations.
Antioxid Redox Signal. 11:59–98. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Taketani S, Kohno H, Yoshinaga T and
Tokunaga R: The human 32-kDa stress protein induced by exposure to
arsenite and cadmium ions is heme oxygenase. FEBS Lett.
245:173–176. 1989. View Article : Google Scholar : PubMed/NCBI
|
13
|
Keyse SM and Tyrrell RM: Heme oxygenase is
the major 32-kDa stress protein induced in human skin fibroblast by
UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl
Acad Sci USA. 86:99–103. 1989. View Article : Google Scholar : PubMed/NCBI
|
14
|
Durante W, Kroll MH, Christodoulides N,
Peyton KJ and Schafer AI: Nitric oxide induces heme oxygenase-1
gene expression and carbon monoxide production in vascular smooth
muscle cells. Circ Res. 80:557–564. 1997. View Article : Google Scholar : PubMed/NCBI
|
15
|
Valvason C, Musacchio E, Pozzuoli A,
Ramonda R, Aldegheri R and Punzi L: Influence of glucosamine
sulphate on oxidative stress in human osteoarthritic chondrocytes:
effects on HO-1, p22(Phox) and iNOS expression. Rheumatology
(Oxford). 47:31–35. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim KM, Song JD, Chung HT and Park YC:
Protein kinase CK2 mediates peroxynitrite-induced heme oxygenase-1
expression in articular chondrocytes. Int J Mol Med. 29:1039–1044.
2012.PubMed/NCBI
|
17
|
Eyre D: Collagen of articular cartilage.
Arthritis Res. 4:30–35. 2002. View
Article : Google Scholar
|
18
|
Henrotin YE, Bruckner P and Pujol JP: The
role of reactive oxygen species in homeostasis and degradation of
cartilage. Osteoarthritis Cartilage. 11:747–755. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Guillén M, Megias J, Gomar F and Alcaraz
M: Haem oxygenase-1 regulates catabolic and anabolic processes in
osteoarthritic chondrocytes. J Pathol. 214:515–522. 2008.PubMed/NCBI
|
20
|
Kim KM, Kim JM, Yoo YH, Kim JI and Park
YC: Cilostazol induces cellular senescence and confers resistance
to etoposide-induced apoptosis in articular chondrocytes. Int J Mol
Med. 29:619–624. 2012.PubMed/NCBI
|
21
|
Dimri GP, Lee X, Basile G, Acosta M, Scott
G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O,
et al: A biomarker that identifies senescent human cells in culture
and in aging skin in vivo. Proc Natl Acad Sci USA. 92:9363–9367.
1995. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lee SY, Jo HJ, Kim KM, Song JD, Chung HT
and Park YC: Concurrent expression of heme oxygenase-1 and p53 in
human retinal pigment epithelial cell line. Biochem Biophy Res
Commun. 365:870–874. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Vincenti MP, Coon CI, Lee O and
Brinckerhoff CE: Regulation of collagenase gene expression by IL-1
beta requires transcriptional and post-transcriptional mechanisms.
Nucleic Acids Res. 22:4818–4827. 1994. View Article : Google Scholar : PubMed/NCBI
|
24
|
Pelletier JP, McCollum R, DiBattista J,
Loose LD, Cloutier JM and Martel-Pelletier J: Regulation of human
normal and osteoarthritic chondrocyte interleukin-1 receptor by
antirheumatic drugs. Arthritis Rheum. 36:1517–1527. 1993.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Goldring MB: Osteoarthritis and cartilage:
the role of cytokines. Curr Rheumatol Rep. 2:459–465. 2000.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Wilks A: Heme oxygenase: evolution,
structure, and mechanism. Antioxid Redox Signal. 4:603–614. 2002.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Otterbein LE and Choi AM: Heme oxygenase:
colors of defense against cellular stress. Am J Physiol Lung Cell
Mol Physiol. 279:L1029–L1037. 2000.PubMed/NCBI
|
28
|
Duckers HJ, Boehm M, True AL, Yet S-F, San
H, Park JL, Webb RC, Lee M-E, Nabel GJ and Nabel EG: Heme
oxygenase-1 protects against vascular constriction and
proliferation. Nat Med. 7:693–698. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Pae HO, Choi BM, Oh GS, Lee MS, Ryu DG,
Rhew HY, Kim YM and Chung HT: Roles of heme oxygenase-1 in the
antiproliferative and antiapoptotic effects of nitric oxide on
Jurkat T cells. Mol Pharmacol. 66:122–128. 2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fernández P, Guillén MI, Gomar F and
Alcaraz MJ: Expression of heme oxygenase-1 and regulation by
cytokines in human osteoarthritic chondrocytes. Biochem Pharmacol.
66:2049–2052. 2003.PubMed/NCBI
|
31
|
Zwerina J, Tzima S, Hayer S, Redlich K,
Hoffmann O, Hanslik-Schnabel B, Smolen JS, Kollias G and Schett G:
Heme oxygenase 1 (HO-1) regulates osteoclastogenesis and bone
resorption. FASEB J. 19:2011–2013. 2005.PubMed/NCBI
|
32
|
Bauer M and Bauer I: Heme oxygenase-1:
redox regulation and role in the hepatic response to oxidative
stress. Antioxid Redox Signal. 4:749–758. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Otterbein LE, Kolls JK, Mantell LL, Cook
JL, Alam J and Choi AM: Exogenous administration of heme
oxygenase-1 by gene transfer provides protection against
hyperoxia-induced lung injury. J Clin Invest. 103:1047–1054. 1999.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Kim HA, Lee KB and Bae S-C: The mechanism
of low-concentration sodium nitroprusside-mediated protection of
chondrocyte death. Arthritis Res Ther. 7:R526–R535. 2005.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Carlo MD Jr and Loeser RF: Increased
oxidative stress with aging reduces chondrocyte survival:
correlation with intracellular glutathione levels. Arthritis Rheum.
48:3419–3430. 2003. View Article : Google Scholar
|
36
|
Murray MM, Zurakowski D and Vrahas MS: The
death of articular chondrocytes after intra-articular fracture in
humans. J Trauma. 56:128–131. 2004. View Article : Google Scholar : PubMed/NCBI
|