1
|
Kobayashi K, Sinasac DS, Iijima M, et al:
The gene mutated in adult-onset type II citrullinaemia encodes a
putative mitochondrial carrier protein. Nat Genet. 22:159–163.
1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Palmieri F: The mitochondrial transporter
family SLC25: identification, properties and physiopathology. Mol
Aspects Med. 34:465–484. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Palmieri F: Mitochondrial transporters of
the SLC25 family and associated diseases: a review. J Inherit Metab
Dis. 37:565–575. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tokuhara D, Iijima M, Tamamori A, et al:
Novel diagnostic approach to citrin deficiency: analysis of citrin
protein in lymphocytes. Mol Genet Metab. 90:30–36. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Xing YZ, Qiu WJ, Ye J, et al: Studies on
the clinical manifestation and SLC25A13 gene mutation of Chinese
patients with neonatal intrahepatic cholestasis caused by citrin
deficiency. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 27:180–185.
2010.(In Chinese).
|
6
|
Fu HY, Zhang SR, Wang XH, et al: The
mutation spectrum of the SLC25A13 gene in Chinese infants with
intrahepatic cholestasis and aminoacidemia. J Gastroenterol.
46:510–518. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Song YZ, Deng M, Chen FP, et al: Genotypic
and phenotypic features of citrin deficiency: five-year experience
in a Chinese pediatric center. Int J Mol Med. 28:33–40.
2011.PubMed/NCBI
|
8
|
Lin WX, Zhang ZH, Deng M, Cai XR and Song
YZ: Multiple ovarian antral follicles in a preterm infant with
neonatal intrahepatic cholestasis caused by citrin deficiency: a
clinical, genetic and transcriptional analysis. Gene. 505:269–275.
2012. View Article : Google Scholar
|
9
|
Zhang ZH, Lin WX, Deng M, Zhao XJ and Song
YZ: Molecular analysis of SLC25A13 gene in human peripheral
blood lymphocytes: marked transcript diversity, and the feasibility
of cDNA cloning as a diagnostic tool for citrin deficiency. Gene.
511:227–234. 2012.
|
10
|
Wongkittichote P, Tungpradabkul S,
Wattanasirichaigoon D and Jensen LT: Prediction of the functional
effect of novel SLC25A13 variants using a S.
cerevisiae model of AGC2 deficiency. J Inherit Metab Dis.
36:821–830. 2013.PubMed/NCBI
|
11
|
Song YZ, Zhang ZH, Lin WX, et al:
SLC25A13 gene analysis in citrin deficiency: sixteen novel
mutations in East Asian patients, and the mutation distribution in
a large pediatric cohort in China. PLoS One. 8:e745442013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang ZH, Lin WX, Deng M, et al: Clinical,
molecular and functional investigation on an infant with neonatal
intrahepatic cholestasis caused by citrin deficiency (NICCD). PLoS
One. 9:e892672014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Nagasaka H, Okano Y, Tsukahara H, et al:
Sustaining hypercitrullinemia, hypercholesterolemia and augmented
oxidative stress in Japanese children with aspartate/glutamate
carrier isoform 2-citrin-deficiency even during the silent period.
Mol Genet Metab. 97:21–26. 2009. View Article : Google Scholar
|
14
|
Wang JS, Wang XH, Zheng YJ, et al:
Biochemical characteristics of neonatal cholestasis induced by
citrin deficiency. World J Gastroenterol. 18:5601–5607. 2012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Song YZ, Li BX, Chen FP, et al: Neonatal
intrahepatic cholestasis caused by citrin deficiency: clinical and
laboratory investigation of 13 subjects in mainland of China. Dig
Liver Dis. 41:683–689. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Komatsu M, Yazaki M, Tanaka N, et al:
Citrin deficiency as a cause of chronic liver disorder mimicking
non-alcoholic fatty liver disease. J Hepatol. 49:810–820. 2008.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Kimura A, Kage M, Nagata I, et al:
Histological findings in the livers of patients with neonatal
intrahepatic cholestasis caused by citrin deficiency. Hepatol Res.
40:295–303. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jiang GY, Cheng ZM and Liu KS: Neonatal
intrahepatic cholestasis caused by citrin deficiency: a
histopathologic study of 10 cases. Zhonghua Bing Li Xue Za Zhi.
41:452–455. 2012.(In Chinese).
|
19
|
Saheki T, Inoue K, Ono H, et al:
Metabolomic analysis reveals hepatic metabolite perturbations in
citrin/mitochondrial glycerol-3-phosphate dehydrogenase
double-knockout mice, a model of human citrin deficiency. Mol Genet
Metab. 104:492–500. 2011. View Article : Google Scholar
|
20
|
Kuhara T, Ohse M, Inoue Y and Cooper AJ: A
GC/MS-based metabolomic approach for diagnosing citrin deficiency.
Anal Bioanal Chem. 400:1881–1894. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Okano Y, Kobayashi K, Ihara K, et al:
Fatigue and quality of life in citrin deficiency during adaptation
and compensation stage. Mol Genet Metab. 109:9–13. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Shigeta T, Kasahara M, Kimura T, et al:
Liver transplantation for an infant with neonatal intrahepatic
cholestasis caused by citrin deficiency using heterozygote living
donor. Pediatr Transplant. 14:E86–E88. 2010. View Article : Google Scholar
|
23
|
Yazaki M, Ikeda S, Kobayashi K and Saheki
T: Therapeutic approaches for patients with adult-onset type II
citrullinemia (CTLN2): effectiveness of treatment with
low-carbohydrate diet and sodium pyruvate. Rinsho Shinkeigaku.
50:844–847. 2010.(In Japanese).
|
24
|
Hayasaka K, Numakura C, Toyota K and
Kimura T: Treatment with lactose (galactose)-restricted and
medium-chain triglyceride-supplemented formula for neonatal
intrahepatic cholestasis caused by citrin deficiency. JIMD Rep.
2:37–44. 2012. View Article : Google Scholar
|
25
|
Saheki T, Inoue K, Ono H, et al: Effects
of supplementation on food intake, body weight and hepatic
metabolites in the citrin/mitochondrial glycerol-3-phosphate
dehydrogenase double-knockout mouse model of human citrin
deficiency. Mol Genet Metab. 107:322–329. 2012. View Article : Google Scholar
|
26
|
Yazaki M, Kinoshita M, Ogawa S, et al: A
73-year-old patient with adult-onset type II citrullinemia
successfully treated by sodium pyruvate and arginine. Clin Neurol
Neurosurg. 115:1542–1545. 2013.PubMed/NCBI
|
27
|
Lu YB, Kobayashi K, Ushikai M, et al:
Frequency and distribution in East Asia of 12 mutations identified
in the SLC25A13 gene of Japanese patients with citrin
deficiency. J Hum Genet. 50:338–346. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kikuchi A, Arai-Ichinoi N, Sakamoto O, et
al: Simple and rapid genetic testing for citrin deficiency by
screening 11 prevalent mutations in SLC25A13. Mol Genet
Metab. 105:553–558. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Treepongkaruna S, Jitraruch S, Kodcharin
P, et al: Neonatal intrahepatic cholestasis caused by citrin
deficiency: prevalence and SLC25A13 mutations among Thai
infants. BMC Gastroenterol. 12:1412012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen R, Wang XH, Fu HY, et al: Different
regional distribution of SLC25A13 mutations in Chinese
patients with neonatal intrahepatic cholestasis. World J
Gastroenterol. 19:4545–4551. 2013.PubMed/NCBI
|
31
|
Wongkittichote P, Sukasem C, Kikuchi A, et
al: Screening of SLC25A13 mutation in the Thai population.
World J Gastroenterol. 19:7735–7742. 2013.
|
32
|
Luder AS, Tabata A, Iijima M, Kobayashi K
and Mandel H: Citrullinaemia type 2 outside East Asia: Israeli
experience. J Inherit Metab Dis. 29:S592006.
|
33
|
Yeh JN, Jeng YM, Chen HL, Ni YH, Hwu WL
and Chang MH: Hepatic steatosis and neonatal intrahepatic
cholestasis caused by citrin deficiency (NICCD) in Taiwanese
infants. J Pediatr. 148:642–646. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ohura T, Kobayashi K, Tazawa Y, et al:
Clinical pictures of 75 patients with neonatal intrahepatic
cholestasis caused by citrin deficiency (NICCD). J Inherit Metab
Dis. 30:139–144. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ko JM, Kim GH, Kim JH, et al: Six cases of
citrin deficiency in Korea. Int J Mol Med. 20:809–815.
2007.PubMed/NCBI
|
36
|
Chew HB, Ngu LH, Zabedah MY, et al:
Neonatal intrahepatic cholestasis associated with citrin deficiency
(NICCD): a case series of 11 Malaysian patients. J Inherit Metab
Dis. 33:S489–S495. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lee BH, Jin HY, Kim GH, Choi JH and Yoo
HW: Nonalcoholic fatty liver disease in 2 siblings with adult-onset
type II citrullinemia. J Pediatr Gastroenterol Nutr. 50:682–685.
2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ngu HL, Zabedah MY and Kobayashi K:
Neonatal intrahepatic cholestasis caused by citrin deficiency
(NICCD) in three Malay children. Malays J Pathol. 32:53–57.
2010.PubMed/NCBI
|
39
|
Thong MK, Boey CC, Sheng JS, Ushikai M and
Kobayashi K: Neonatal intrahepatic cholestasis caused by citrin
deficiency in two Malaysian siblings: outcome at one year of life.
Singapore Med J. 51:e12–e14. 2010.PubMed/NCBI
|
40
|
Lin JT, Hsiao KJ, Chen CY, et al: High
resolution melting analysis for the detection of SLC25A13
gene mutations in Taiwan. Clin Chim Acta. 412:460–465. 2011.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Chen ST, Su YN, Ni YH, et al: Diagnosis of
neonatal intrahepatic cholestasis caused by citrin deficiency using
high-resolution melting analysis and a clinical scoring system. J
Pediatr. 161:626–631. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Takahashi Y, Koyama S, Tanaka H, et al: An
elderly Japanese patient with adult-onset type II citrullinemia
with a novel D493G mutation in the SLC25A13 gene. Intern
Med. 51:2131–2134. 2012. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hutchin T, Preece MA, Kobayashi K, et al:
Neonatal intrahepatic cholestasis caused by citrin deficiency
(NICCD) in an European patient. J Inherit Metab Dis.
29:S1122006.
|
44
|
Hutchin T, Preece MA, Hendriksz C, et al:
Neonatal intrahepatic cholestasis caused by citrin deficiency
(NICCD) as a cause of liver disease in infants in the UK. J Inherit
Metab Dis. 32:S151–S155. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Fiermonte G, Parisi G, Martinelli D, et
al: A new Caucasian case of neonatal intrahepatic cholestasis
caused by citrin deficiency (NICCD): a clinical, molecular, and
functional study. Mol Genet Metab. 104:501–506. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Vitoria I, Dalmau J, Ribes C, et al:
Citrin deficiency in a Romanian child living in Spain highlights
the worldwide distribution of this defect and illustrates the value
of nutritional therapy. Mol Genet Metab. 110:181–183. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Dimmock D, Kobayashi K, Iijima M, et al:
Citrin deficiency: a novel cause of failure to thrive that responds
to a high-protein, low-carbohydrate diet. Pediatrics.
119:e773–e777. 2007. View Article : Google Scholar : PubMed/NCBI
|
48
|
Dimmock D, Maranda B, Dionisi-Vici C, et
al: Citrin deficiency, a perplexing global disorder. Mol Genet
Metab. 96:44–49. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wong LJ, Dimmock D, Geraghty MT, et al:
Utility of oligonucleotide array-based comparative genomic
hybridization for detection of target gene deletions. Clin Chem.
54:1141–1148. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Kobayashi K, Saheki T and Song YZ: Citrin
Deficiency. GeneReviews™ (Internet). Pagon RA, Bird TD, Dolan CR,
Stephens K and Adam MP: Seattle (WA): University of Washington,
Seattle; 1993–2005 Sep 16. (updated 2012 Jan 05).
|
51
|
Woo HI, Park HD and Lee YW: Molecular
genetics of citrullinemia types I and II. Clin Chim Acta. 431:1–8.
2014. View Article : Google Scholar : PubMed/NCBI
|
52
|
Tabata A, Sheng JS, Ushikai M, et al:
Identification of 13 novel mutations including a retrotransposal
insertion in SLC25A13 gene and frequency of 30 mutations
found in patients with citrin deficiency. J Hum Genet. 53:534–545.
2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wen P, Wang G, Chen Z, et al: Clinical
investigation and mutation analysis of a child with citrin
deficiency complicated with purpura, convulsive seizures and
methioninemia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 30:649–653.
2013.(In Chinese).
|
54
|
Tong F, Yang JB, Huang XL, Zhou XL and
Yang RL: A case of neonatal intrahepatic cholestasis caused by
citrin deficiency complicated with congenital biliary atresia.
Zhonghua Er Ke Za Zhi. 51:863–865. 2013.(In Chinese).
|
55
|
Zhao XJ, Tang XM, Zha QB, et al: Prenatal
diagnosis of citrin deficiency in a Chinese family with a fatal
proband. Tohoku J Exp Med. 225:273–276. 2011. View Article : Google Scholar : PubMed/NCBI
|
56
|
Desmet VJ and Roskams TA: Cholestatic
syndromes of infancy and childhood. Hepatology, a textbook of liver
disease. Zakim D and Boyer TD: 4th edition. Saunders; Philadelphia:
pp. 1481–1536. 2003
|
57
|
Heaton ND, Davenport M and Howard ER:
Intraluminal biliary obstruction. Arch Dis Child. 66:1395–1398.
1991. View Article : Google Scholar : PubMed/NCBI
|
58
|
Boyer JL: Bile formation and secretion.
Compr Physiol. 3:1035–1078. 2013.PubMed/NCBI
|
59
|
Suchy FJ and Ananthanarayanan M: Bile salt
excretory pump: biology and pathobiology. J Pediatr Gastroenterol
Nutr. 43:S10–S16. 2006. View Article : Google Scholar : PubMed/NCBI
|
60
|
Sherlock S and Dooley J: Cysts and
congenital biliary abnormalities. Diseases of the liver and biliary
system. Sherlock S and Dooley J: 11th edition. Victoria
(Australia): Blackwell Publishing Asia; pp. 583–596. 2005
|
61
|
de Jong EM, Felix JF, de Klein A and
Tibboel D: Etiology of esophageal atresia and tracheoesophageal
fistula: ‘mind the gap’. Curr Gastroenterol Rep. 12:215–222.
2010.
|
62
|
Felix JF, de Jong EM, Torfs CP, de Klein
A, Rottier RJ and Tibboel D: Genetic and environmental factors in
the etiology of esophageal atresia and/or tracheoesophageal
fistula: an overview of the current concepts. Birth Defects Res A
Clin Mol Teratol. 85:747–754. 2009. View Article : Google Scholar : PubMed/NCBI
|
63
|
Dworschak GC, Draaken M, Hilger A, et al:
An incompletely penetrant novel MAFB (p.Ser56Phe) variant in
autosomal dominant multicentric carpotarsal osteolysis syndrome.
Int J Mol Med. 32:174–178. 2013.
|
64
|
Jéru I, Charmion S, Cochet E, et al:
Involvement of the same TNFR1 residue in mendelian and
multifactorial inflammatory disorders. PLoS One.
8:e697572013.PubMed/NCBI
|
65
|
Dezfouli MA, Yadegari S, Nafissi S and
Elahi E: Four novel C20orf54 mutations identified in
Brown-Vialetto-Van Laere syndrome patients. J Hum Genet.
57:613–617. 2012. View Article : Google Scholar : PubMed/NCBI
|
66
|
Boutzios G, Livadas S, Marinakis E, Opie
N, Economou F and Diamanti-Kandarakis E: Endocrine and metabolic
aspects of the Wolfram syndrome. Endocrine. 40:10–13. 2011.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Imamura Y, Kobayashi K, Shibatou T, et al:
Effectiveness of carbohydrate-restricted diet and arginine granules
therapy for adult-onset type II citrullinemia: a case report of
siblings showing homozygous SLC25A13 mutation with and without the
disease. Hepatol Res. 26:68–72. 2003. View Article : Google Scholar : PubMed/NCBI
|
68
|
Yagi M, Kosunoki N, Lee T, Kikuchi A, Kure
S and Takeshima Y: A Japanese family with citrin deficiency: a
daughter with NICCD and a mother without symptoms of CTLN2. In: The
3rd Asian Congress for Inherited Metabolic Diseases (ACIMD)/The
55th Annual Meeting of The Japanese Society for inherited metabolic
diseases (JSIMD): Program Book; Japan. 2013 Nov 27–29; Chiba: pp.
P149
|