1
|
Wen PY and Kesari S: Malignant gliomas in
adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Parsons DW, Jones S, Zhang X, Lin JC,
Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi
A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam
DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL,
Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R,
Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE and
Kinzler KW: An integrated genomic analysis of human glioblastoma
multiforme. Science. 321:1807–1812. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yan H, Parsons DW, Jin G, McLendon R,
Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ,
Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW,
Velculescu VE, Vogelstein B and Bigner DD: IDH1 and IDH2 mutations
in gliomas. N Engl J Med. 360:765–773. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Phillips HS, Kharbanda S, Chen R, Forrest
WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L,
Williams PM, Modrusan Z, Feuerstein BG and Aldape K: Molecular
subclasses of high-grade glioma predict prognosis, delineate a
pattern of disease progression, and resemble stages in
neurogenesis. Cancer Cell. 9:157–173. 2006. View Article : Google Scholar
|
5
|
Bredel M, Scholtens DM, Harsh GR, Bredel
C, Chandler JP, Renfrow JJ, Yadav AK, Vogel H, Scheck AC,
Tibshirani R and Sikic BI: A network model of a cooperative genetic
landscape in brain tumors. JAMA. 302:261–275. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yadav AK, Renfrow JJ, Scholtens DM, Xie H,
Duran GE, Bredel C, Vogel H, Chandler JP, Chakravarti A, Robe PA,
Das S, Scheck AC, Kessler JA, Soares MB, Sikic BI, Harsh GR and
Bredel M: Monosomy of chromosome 10 associated with dysregulation
of epidermal growth factor signaling in glioblastomas. JAMA.
302:276–289. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Cancer Genome Atlas Research Network.
Comprehensive genomic characterization defines human glioblastoma
genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Watanabe K, Tachibana O, Sata K, Yonekawa
Y, Kleihues P and Ohgaki H: Overexpression of the EGF receptor and
p53 mutations are mutually exclusive in the evolution of primary
and secondary glioblastomas. Brain Pathol. 6:217–224. 1996.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Bargou RC, Leng C, Krappmann D, Emmerich
F, Mapara MY, Bommert K, Royer HD, Scheidereit C and Dörken B:
High-level nuclear NF-kappa B and Oct-2 is a common feature of
cultured Hodgkin/Reed-Sternberg cells. Blood. 87:4340–4347.
1996.PubMed/NCBI
|
10
|
Grüssel T and Busch W: Experimental
studies of the effect of peracetic acid on the endometrium of
cattle. Tierarztl Prax. 25:28–34. 1997.(In German).
|
11
|
Barkett M and Gilmore TD: Control of
apoptosis by Rel/NF-kappaB transcription factors. Oncogene.
18:6910–6924. 1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
May MJ and Ghosh S: Signal transduction
through NF-kappa B. Immunol Today. 19:80–88. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chiao PJ, Miyamoto S and Verma IM:
Autoregulation of I kappa B alpha activity. Proc Natl Acad Sci USA.
91:28–32. 1994. View Article : Google Scholar : PubMed/NCBI
|
14
|
Baeuerle PA and Baltimore D: NF-kappa B:
ten years after. Cell. 87:13–20. 1996.PubMed/NCBI
|
15
|
Matthews JR, Nicholson J, Jaffray E, Kelly
SM, Price NC and Hay RT: Conformational changes induced by DNA
binding of NF-kappa B. Nucleic Acids Res. 23:3393–3402. 1995.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Roulston A, Lin R, Beauparlant P, Wainberg
MA and Hiscott J: Regulation of human immunodeficiency virus type 1
and cytokine gene expression in myeloid cells by NF-kappa B/Rel
transcription factors. Microbiol Rev. 59:481–505. 1995.PubMed/NCBI
|
17
|
Raychaudhuri B, Han Y, Lu T and Vogelbaum
MA: Aberrant constitutive activation of nuclear factor kappaB in
glioblastoma multiforme drives invasive phenotype. J Neurooncol.
85:39–47. 2007. View Article : Google Scholar
|
18
|
Nagai S, Washiyama K, Kurimoto M, Takaku
A, Endo S and Kumanishi T: Aberrant nuclear factor-kappaB activity
and its participation in the growth of human malignant astrocytoma.
J Neurosurg. 96:909–917. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bredel M, Bredel C, Juric D, Duran GE, Yu
RX, Harsh GR, Vogel H, Recht LD, Scheck AC and Sikic BI: Tumor
necrosis factor-alpha-induced protein 3 as a putative regulator of
nuclear factor-kappaB-mediated resistance to O6-alkylating agents
in human glioblastomas. J Clin Oncol. 24:274–287. 2006. View Article : Google Scholar
|
20
|
Tsunoda K, Kitange G, Anda T, Shabani HK,
Kaminogo M, Shibata S and Nagata I: Expression of the
constitutively activated RelA/NF-kappaB in human astrocytic tumors
and the in vitro implication in the regulation of urokinase-type
plasminogen activator, migration, and invasion. Brain Tumor Pathol.
22:79–87. 2005. View Article : Google Scholar
|
21
|
Bredel M, Scholtens DM, Yadav AK, Alvarez
AA, Renfrow JJ, Chandler JP, Yu IL, Carro MS, Dai F, Tagge MJ,
Ferrarese R, Bredel C, Phillips HS, Lukac PJ, Robe PA, Weyerbrock
A, Vogel H, Dubner S, Mobley B, He X, Scheck AC, Sikic BI, Aldape
KD, Chakravarti A and Harsh GR IV: NFKBIA deletion in
glioblastomas. N Engl J Med. 364:627–637. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Davis N, Ghosh S, Simmons DL, Tempst P,
Liou HC, Baltimore D and Bose HR Jr: Rel-associated pp40: an
inhibitor of the rel family of transcription factors. Science.
253:1268–1271. 1991. View Article : Google Scholar : PubMed/NCBI
|
23
|
Haskill S, Beg AA, Tompkins SM, Morris JS,
Yurochko AD, Sampsonjohannes A, Mondal K, Ralph P and Baldwin AS
Jr: Characterization of an immediate-early gene induced in adherent
monocytes that encodes I-kappa-B-like activity. Cell. 65:1281–1289.
1991. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jacobs MD and Harrison SC: Structure of an
IkappaBalpha/NF-kappaB complex. Cell. 95:749–758. 1998. View Article : Google Scholar : PubMed/NCBI
|
25
|
Spink CF, Gray LC, Davies FE, Morgan GJ
and Bidwell JL: Haplotypic structure across the I kappa B alpha
gene (NFKBIA) and association with multiple myeloma. Cancer Lett.
246:92–99. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Krappmann D, Emmerich F, Kordes U,
Scharschmidt E, Dörken B and Scheidereit C: Molecular mechanisms of
constitutive NF-kappaB/Rel activation in Hodgkin/Reed-Sternberg
cells. Oncogene. 18:943–953. 1999. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cabannes E, Khan G, Aillet F, Jarrett RF
and Hay RT: Mutations in the IkBa gene in Hodgkin’s disease suggest
a tumour suppressor role for IkappaBalpha. Oncogene. 18:3063–3070.
1999.PubMed/NCBI
|
28
|
Emmerich F, Meiser M, Hummel M, Demel G,
Foss HD, Jundt F, Mathas S, Krappmann D, Scheidereit C, Stein H and
Dörken B: Overexpression of I kappa B alpha without inhibition of
NF-kappaB activity and mutations in the I kappa B alpha gene in
Reed-Sternberg cells. Blood. 94:3129–3134. 1999.PubMed/NCBI
|
29
|
Jungnickel B, Staratschek-Jox A,
Brauninger A, Spieker T, Wolf J, Diehl V, Hansmann ML, Rajewsky K
and Kuppers R: Clonal deleterious mutations in the IkappaBalpha
gene in the malignant cells in Hodgkin’s lymphoma. J Exp Med.
191:395–402. 2000.PubMed/NCBI
|
30
|
Lake A, Shield LA, Cordano P, Chui DT,
Osborne J, Crae S, Wilson KS, Tosi S, Knight SJ, Gesk S, Siebert R,
Hay RT and Jarrett RF: Mutations of NFKBIA, encoding IkappaBalpha,
are a recurrent finding in classical Hodgkin lymphoma but are not a
unifying feature of non-EBV-associated cases. Int J Cancer.
125:1334–1342. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sjöblom T, Jones S, Wood LD, Parsons DW,
Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo
S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson
D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G,
Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW and
Velculescu VE: The consensus coding sequences of human breast and
colorectal cancers. Science. 314:268–274. 2006.
|
32
|
Gao J, Pfeifer D, He LJ, Qiao F, Zhang Z,
Arbman G, Wang ZL, Jia CR, Carstensen J and Sun XF: Association of
NFKBIA polymorphism with colorectal cancer risk and prognosis in
Swedish and Chinese populations. Scand J Gastroenterol. 42:345–350.
2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Osborne J, Lake A, Alexander FE, Taylor GM
and Jarrett RF: Germline mutations and polymorphisms in the NFKBIA
gene in Hodgkin lymphoma. Int J Cancer. 116:646–651. 2005.
View Article : Google Scholar : PubMed/NCBI
|
34
|
He Y, Zhang H, Yin J, Xie J, Tan X, Liu S,
Zhang Q, Li C, Zhao J, Wang H and Cao G: IkappaBalpha gene promoter
polymorphisms are associated with hepatocarcinogenesis in patients
infected with hepatitis B virus genotype C. Carcinogenesis.
30:1916–1922. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bu H, Rosdahl I, Sun XF and Zhang H:
Importance of polymorphisms in NF-kappaB1 and NF-kappaBIalpha genes
for melanoma risk, clinicopathological features and tumor
progression in Swedish melanoma patients. J Cancer Res Clin Oncol.
133:859–866. 2007. View Article : Google Scholar : PubMed/NCBI
|
36
|
Liu X, Yu H, Yang W, Zhou X, Lu H and Shi
D: Mutations of NFKBIA in biopsy specimens from Hodgkin lymphoma.
Cancer Genet Cytogenet. 197:152–157. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Parker KM, Ma MH, Manyak S, Altamirano CV,
Tang YM, Frantzen M, Mikail A, Roussos E, Sjak-Shie N, Vescio RA
and Berenson JR: Identification of polymorphisms of the
IkappaBalpha gene associated with an increased risk of multiple
myeloma. Cancer Genet Cytogenet. 137:43–48. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tanaka K, Kawakami T, Tateishi K,
Yashiroda H and Chiba T: Control of IkappaBalpha proteolysis by the
ubiquitin-proteasome pathway. Biochimie. 83:351–356. 2001.
View Article : Google Scholar : PubMed/NCBI
|
39
|
White KL, Vierkant RA, Phelan CM, Fridley
BL, Anderson S, Knutson KL, Schildkraut JM, Cunningham JM, Kelemen
LE, Pankratz VS, Rider DN, Liebow M, Hartmann LC, Sellers TA and
Goode EL: Polymorphisms in NF-kappaB inhibitors and risk of
epithelial ovarian cancer. BMC Cancer. 9:1702009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Obata H, Biro S, Arima N, Kaieda H, Kihara
T, Eto H, Miyata M and Tanaka H: NF-kappa B is induced in the
nuclei of cultured rat aortic smooth muscle cells by stimulation of
various growth factors. Biochem Bioph Res Commun. 224:27–32. 1996.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Habib AA, Högnason T, Ren J, Stefánsson K
and Ratan RR: The epidermal growth factor receptor associates with
and recruits phosphatidylinositol 3-kinase to the platelet-derived
growth factor beta receptor. J Biol Chem. 273:6885–6891. 1998.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Sun L and Carpenter G: Epidermal growth
factor activation of NF-kappaB is mediated through IkappaBalpha
degradation and intracellular free calcium. Oncogene. 16:2095–2102.
1998. View Article : Google Scholar : PubMed/NCBI
|
43
|
Biswas DK, Cruz AP, Gansberger E and
Pardee AB: Epidermal growth factor-induced nuclear factor kappa B
activation: A major pathway of cell-cycle progression in
estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci
USA. 97:8542–8547. 2000. View Article : Google Scholar
|
44
|
Haussler U, von Wichert G, Schmid RM,
Keller F and Schneider G: Epidermal growth factor activates nuclear
factor-kappaB in human proximal tubule cells. Am J Physiol Renal
Physiol. 289:F808–F815. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sethi G, Ahn KS, Chaturvedi MM and
Aggarwal BB: Epidermal growth factor (EGF) activates nuclear
factor-kappaB through IkappaBalpha kinase-independent but EGF
receptor-kinase dependent tyrosine 42 phosphorylation of
IkappaBalpha. Oncogene. 26:7324–7332. 2007. View Article : Google Scholar
|
46
|
Beg AA and Baldwin AS Jr: The I kappa B
proteins: multifunctional regulators of Rel/NF-kappa B
transcription factors. Genes Dev. 7:2064–2070. 1993. View Article : Google Scholar : PubMed/NCBI
|
47
|
Brown K, Park S, Kanno T, Franzoso G and
Siebenlist U: Mutual regulation of the transcriptional activator
NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci
USA. 90:2532–2536. 1993. View Article : Google Scholar : PubMed/NCBI
|
48
|
Henkel T, Machleidt T, Alkalay I, Kronke
M, Ben-Neriah Y and Baeuerle PA: Rapid proteolysis of I kappa
B-alpha is necessary for activation of transcription factor
NF-kappa B. Nature. 365:182–185. 1993. View Article : Google Scholar : PubMed/NCBI
|
49
|
Mellits KH, Hay RT and Goodbourn S:
Proteolytic degradation of MAD3 (I kappa B alpha) and enhanced
processing of the NF-kappa B precursor p105 are obligatory steps in
the activation of NF-kappa B. Nucleic Acids Res. 21:5059–5066.
1993. View Article : Google Scholar : PubMed/NCBI
|