1
|
Boyle PJ: Diabetes mellitus and
macrovascular disease: mechanisms and mediators. Am J Med. 120(9
Suppl): S12–S17. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Xu YW, Sun L, Liang H, Sun GM and Cheng Y:
12/15-lipoxygenase inhibitor baicalein suppresses PPAR gamma
expression and nuclear translocation induced by cerebral
ischemia/reperfusion. Brain Res. 1307:149–157. 2010. View Article : Google Scholar
|
3
|
Collino M, Aragno M, Mastrocola R, et al:
Modulation of the oxidative stress and inflammatory response by
PPAR-gamma agonists in the hippocampus of rats exposed to cerebral
ischemia/reperfusion. Eur J Pharmacol. 530:70–80. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhao Y, Patzer A, Herdegen T, Gohlke P and
Culman J: Activation of cerebral peroxisome proliferator-activated
receptors gamma promotes neuroprotection by attenuation of neuronal
cyclooxygenase-2 overexpression after focal cerebral ischemia in
rats. FASEB J. 20:1162–1175. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li Q, Cheon YP, Kannan A, Shanker S,
Bagchi IC and Bagchi MK: A novel pathway involving progesterone
receptor, 12/15-lipoxygenase-derived eicosanoids and peroxisome
proliferator-activated receptor gamma regulates implantation in
mice. J Biol Chem. 279:11570–11581. 2004. View Article : Google Scholar
|
6
|
Lebeau A, Terro F, Rostene W and Pelaprat
D: Blockade of 12-lipoxygenase expression protects cortical neurons
from apoptosis induced by beta-amyloid peptide. Cell Death Differ.
11:875–884. 2004. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ou Z, Zhao X, Labiche LA, et al: Neuronal
expression of peroxisome proliferator-activated receptor-gamma
(PPARgamma) and 15d-prostaglandin J2-mediated protection of brain
after experimental cerebral ischemia in rat. Brain Res.
1096:196–203. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sundararajan S, Gamboa JL, Victor NA,
Wanderi EW, Lust WD and Landreth GE: Peroxisome
proliferator-activated receptor-gamma ligands reduce inflammation
and infarction size in transient focal ischemia. Neuroscience.
130:685–696. 2005. View Article : Google Scholar
|
9
|
Pereira MP, Hurtado O, Cárdenas A, et al:
Rosiglitazone and 15-deoxy-delta12,14-prostaglandin J2 cause potent
neuroprotection after experimental stroke through noncompletely
overlapping mechanisms. J Cereb Blood Flow Metab. 26:218–229. 2006.
View Article : Google Scholar
|
10
|
Chu K, Lee ST, Koo JS, et al: Peroxisome
proliferator-activated receptor-gamma-agonist, rosiglitazone,
promotes angiogenesis after focal cerebral ischemia. Brain Res.
1093:208–218. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tureyen K, Kapadia R, Bowen KK, et al:
Peroxisome proliferator-activated receptor-gamma agonists induce
neuroprotection following transient focal ischemia in normotensive,
normoglycemic as well as hypertensive and type-2 diabetic rodents.
J Neurochem. 101:41–56. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhao X, Strong R, Zhang J, et al: Neuronal
PPARgamma deficiency increases susceptibility to brain damage after
cerebral ischemia. J Neurosci. 29:6186–6195. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Czapski GA, Czubowicz K and Strosznajder
RP: Evaluation of the antioxidative properties of lipoxygenase
inhibitors. Pharmacol Rep. 64:1179–1188. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Giannopoulos PF, Joshi YB, Chu J and
Praticò D: The 12–15-lipoxygenase is a modulator of
Alzheimer’s-related tau pathology in vivo. Aging Cell.
12:1082–1090. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Praticò D, Zhukareva V, Yao Y, et al:
12/15-lipoxygenase is increased in Alzheimer’s disease: possible
involvement in brain oxidative stress. Am J Pathol. 164:1655–1662.
2004. View Article : Google Scholar
|
16
|
Limor R, Sharon O, Knoll E, Many A,
Weisinger G and Stern N: Lipoxygenase-derived metabolites are
regulators of peroxisome proliferator-activated receptor gamma-2
expression in human vascular smooth muscle cells. Am J Hypertens.
21:219–223. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Bull AW, Steffensen KR, Leers J and Rafter
JJ: Activation of PPAR gamma in colon tumor cell lines by oxidized
metabolites of linoleic acid, endogenous ligands for PPAR gamma.
Carcinogenesis. 24:1717–1722. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yao Y, Clark CM, Trojanowski JQ, Lee VM
and Pratico D: Elevation of 12/15 lipoxygenase products in AD and
mild cognitive impairment. Ann Neurol. 58:623–626. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Palluy O, Bendani M, Vallat JM and Rigaud
M: 12-lipoxygenase mRNA expression by cultured neurons. C R Acad
Sci III. 317:813–818. 1994.PubMed/NCBI
|
20
|
Pekcec A, Yigitkanli K, Jung JE, Pallast
S, Xing C, Antipenko A, Minchenko M, Nikolov DB, Holman TR, Lo EH
and van Leyen K: Following experimental stroke, the recovering
brain is vulnerable to lipoxygenase-dependent semaphorin signaling.
FASEB J. 27:437–445. 2013. View Article : Google Scholar :
|
21
|
Marcus SL, Miyata KS, Zhang B, Subramani
S, Rachubinski RA and Capone JP: Diverse peroxisome
proliferator-activated receptors bind to the peroxisome
proliferator-responsive elements of the rat hydratase/dehydrogenase
and fatty acyl-CoA oxidase genes but differentially induce
expression. Proc Natl Acad Sci USA. 90:5723–5727. 1993. View Article : Google Scholar : PubMed/NCBI
|
22
|
Okuno Y, Matsuda M, Miyata Y, et al: Human
catalase gene is regulated by peroxisome proliferator activated
receptor-gamma through a response element distinct from that of
mouse. Endocr J. 57:303–309. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Venkatachalam G, Kumar AP, Yue LS, Pervaiz
S, Clement MV and Sakharkar MK: Computational identification and
experimental validation of PPRE motifs in NHE1 and MnSOD genes of
human. BMC Genomics. 10(Suppl 3): S52009. View Article : Google Scholar :
|
24
|
Gresa-Arribas N, Viéitez C, Dentesano G,
Serratosa J, Saura J and Solà C: Modelling neuroinflammation in
vitro: a tool to test the potential neuroprotective effect of
anti-inflammatory agents. PLoS One. 7:e452272012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kapinya KJ, Löwl D, Fütterer C, et al:
Tolerance against ischemic neuronal injury can be induced by
volatile anesthetics and is inducible no synthase dependent.
Stroke. 33:1889–1898. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Choi SH, Lee DY, Kim SU and Jin BK:
Thrombin-induced oxidative stress contributes to the death of
hippocampal neurons in vivo: role of microglial NADPH oxidase. J
Neurosci. 25:4082–4090. 2005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xing B, Xin T, Hunter RL and Bing G:
Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide
synthase is associated with altered activity of p38 MAP kinase and
PI3K/Akt. J Neuroinflammation. 5:42008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mulderry PK and Dobson SP: Regulation of
VIP and other neuropeptides by c-Jun in sensory neurons:
implications for the neuropeptide response to axotomy. Eur J
Neurosci. 8:2479–2491. 1996. View Article : Google Scholar : PubMed/NCBI
|