1
|
Cavazzana-Calvo M, Payen E, Negre O, Wang
G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K,
Cavallesco R, Gillet-Legrand B, Caccavelli L, Sgarra R,
Maouche-Chrétien L, Bernaudin F, Girot R, Dorazio R, Mulder GJ,
Polack A, Bank A, Soulier J, Larghero J, Kabbara N, Dalle B,
Gourmel B, Socie G, Chrétien S, Cartier N, Aubourg P, Fischer A,
Cornetta K, Galacteros F, Beuzard Y, Gluckman E, Bushman F,
Hacein-Bey-Abina S and Leboulch P: Transfusion independence and
HMGA2 activation after gene therapy of human β-thalassaemia.
Nature. 467:318–322. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Kaiser J: Gene therapy. Beta-thalassemia
treatment succeeds, with a caveat. Science. 326:1468–1469. 2009.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Dong A, Rivella S and Breda L: Gene
therapy for hemoglobinopathies: progress and challenges. Transl
Res. 161:293–306. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Breda L, Casu C, Gardenghi S, Bianchi N,
Cartegni L, Narla M, Yazdanbakhsh K, Musso M, Manwani D, Little J,
Gardner LB, Kleinert DA, Prus E, Fibach E, Grady RW, Giardina PJ,
Gambari R and Rivella S: Therapeutic hemoglobin levels after gene
transfer in β-thalassemia mice and in hematopoietic cells of
β-thalassemia and sickle cells disease patients. PLoS One.
7:e323452012. View Article : Google Scholar
|
5
|
Zou J, Mali P, Huang X, Dowey SN and Cheng
L: Site-specific gene correction of a point mutation in human iPS
cells derived from an adult patient with sickle cell disease.
Blood. 118:4599–4608. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gambari R and Fibach E: Medicinal
chemistry of fetal hemoglobin inducers for treatment of
beta-thalassemia. Curr Med Chem. 14:199–212. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Reid ME, El Beshlawy A, Inati A, Kutlar A,
Abboud MR, Haynes J Jr, Ward R, Sharon B, Taher AT, Smith W,
Manwani D and Ghalie RG: A double-blind, placebo-controlled phase
II study of the efficacy and safety of 2,2-dimethylbutyrate
(HQK-1001), an oral fetal globin inducer, in sickle cell disease.
Am J Hematol. 89:709–713. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Perrine SP, Pace BS and Faller DV:
Targeted fetal hemoglobin induction for treatment of beta
hemoglobinopathies. Hematol Oncol Clin North Am. 28:233–248. 2014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Breda L, Rivella S, Zuccato C and Gambari
R: Combining gene therapy and fetal hemoglobin induction for
treatment of β-thalassemia. Expert Rev Hematol. 6:255–264. 2013.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Zuccato C, Breda L, Salvatori F,
Breveglieri G, Gardenghi S, Bianchi N, Brognara E, Lampronti I,
Borgatti M, Rivella S and Gambari R: A combined approach for
β-thalassemia based on gene therapy-mediated adult hemoglobin (HbA)
production and fetal hemoglobin (HbF) induction. Ann Hematol.
91:1201–1213. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Voit RA, Hendel A, Pruett-Miller SM and
Porteus MH: Nuclease-mediated gene editing by homologous
recombination of the human globin locus. Nucleic Acids Res.
42:1365–1378. 2014. View Article : Google Scholar :
|
12
|
Ma N, Liao B, Zhang H, Wang L, Shan Y, Xue
Y, Huang K, Chen S, Zhou X, Chen Y, Pei D and Pan G: Transcription
activator-like effector nuclease (TALEN)-mediated gene correction
in integration-free β-thalassemia induced pluripotent stem cells. J
Biol Chem. 288:34671–34679. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Salvatori F, Breveglieri G, Zuccato C,
Finotti A, Bianchi N, Borgatti M, Feriotto G, Destro F, Canella A,
Brognara E, Lampronti I, Breda L, Rivella S and Gambari R:
Production of beta-globin and adult hemoglobin following G418
treatment of erythroid precursor cells from homozygous beta039
thalassemia patients. Am J Hematol. 84:720–728. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ansari SH, Shamsi TS, Ashraf M, Perveen K,
Farzana T, Bohray M, Erum S and Mehboob T: Efficacy of hydroxyurea
in providing transfusion independence in β-thalassemia. J Pediatr
Hematol Oncol. 33:339–343. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fibach E, Bianchi N, Borgatti M, Prus E
and Gambari R: Mithramycin induces fetal hemoglobin production in
normal and thalassemic human erythroid precursor cells. Blood.
102:1276–1281. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Salvador A, Brognara E, Vedaldi D,
Castagliuolo I, Brun P, Zuccato C, Lampronti I and Gambari R:
Induction of erythroid differentiation and increased globin mRNA
production with furocoumarins and their photoproducts. J Photochem
Photobiol B. 121:57–66. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fibach E, Bianchi N, Borgatti M, Zuccato
C, Finotti A, Lampronti I, Prus E, Mischiati C and Gambari R:
Effects of rapamycin on accumulation of alpha-, beta- and
gamma-globin mRNAs in erythroid precursor cells from
beta-thalassaemia patients. Eur J Haematol. 77:437–441. 2006.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Gräslund T, Li X, Magnenat L, Popkov M and
Barbas CF III: Exploring strategies for the design of artificial
transcription factors: targeting sites proximal to known regulatory
regions for the induction of gamma-globin expression and the
treatment of sickle cell disease. J Biol Chem. 280:3707–3714. 2005.
View Article : Google Scholar
|
19
|
Wilber A, Tschulena U, Hargrove PW, Kim
YS, Persons DA, Barbas CF III and Nienhuis AW: A zinc-finger
transcriptional activator designed to interact with the
gamma-globin gene promoters enhances fetal hemoglobin production in
primary human adult erythroblasts. Blood. 115:3033–3041. 2010.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Xu XS, Hong X and Wang G: Induction of
endogenous gamma-globin gene expression with decoy oligonucleotide
targeting Oct-1 transcription factor consensus sequence. J Hematol
Oncol. 2:152009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Gambari R: Alternative options for
DNA-based experimental therapy of β-thalassemia. Expert Opin Biol
Ther. 12:443–462. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sankaran VG, Menne TF, Šćepanović D,
Vergilio JA, Ji P, Kim J, Thiru P, Orkin SH, Lander ES and Lodish
HF: MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin
expression in human trisomy 13. Proc Natl Acad Sci USA.
108:1519–1524. 2001. View Article : Google Scholar
|
23
|
Lulli V, Romania P, Morsilli O, Cianciulli
P, Gabbianelli M, Testa U, Giuliani A and Marziali G:
MicroRNA-486-3p regulates γ-globin expression in human erythroid
cells by directly modulating BCL11A. PLoS One. 8:e604362013.
View Article : Google Scholar
|
24
|
Ma Y, Wang B, Jiang F, Wang D, Liu H, Yan
Y, Dong H, Wang F, Gong B, Zhu Y, Dong L, Yin H, Zhang Z, Zhao H,
Wu Z, Zhang J, Zhou J and Yu J: A feedback loop consisting of
microRNA 23a/27a and the β-like globin suppressors KLF3 and SP1
regulates globin gene expression. Mol Cell Biol. 33:3994–4007.
2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kaul DK, Fabry ME and Nagel RL: The
pathophysiology of vascular obstruction in the sickle syndromes.
Blood Rev. 10:29–44. 1996. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rodgers GP: Overview of pathophysiology
and rationale for treatment of sickle cell anemia. Semin Hematol.
34:2–7. 1997.PubMed/NCBI
|
27
|
Vekilov PG: Sickle-cell haemoglobin
polymerization: is it the primary pathogenic event of sickle-cell
anaemia? Br J Haematol. 139:173–184. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Vasseur C, Pissard S, Domingues-Hamdi E,
Marden MC, Galactéros F and Baudin-Creuza V: Evaluation of the free
α-hemoglobin pool in red blood cells: a new test providing a scale
of β-thalassemia severity. Am J Hematol. 86:199–202. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Rivella S: Do not super-excess me! Blood.
119:5064–5065. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kassim AA and DeBaun MR: Sickle cell
disease, vasculopathy, and therapeutics. Annu Rev Med. 64:451–466.
2013. View Article : Google Scholar
|
31
|
Raghupathy R and Billett HH: Promising
therapies in sickle cell disease. Cardiovasc Hematol Disord Drug
Targets. 9:1–8. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Steinberg MH: Pathophysiologically based
drug treatment of sickle cell disease. Trends Pharmacol Sci.
27:204–210. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gambari R: Peptide nucleic acids: a review
on recent patents and technology transfer. Expert Opin Ther Pat.
24:267–294. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nielsen PE, Egholm M, Berg RH and Buchardt
O: Sequence-selective recognition of DNA by strand displacement
with a thymine-substituted polyamide. Science. 254:1497–1500. 1991.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Egholm M, Buchardt O, Christensen L,
Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B and
Nielsen PE: PNA hybridizes to complementary oligonucleotides
obeying the Watson-Crick hydrogen-bonding rules. Nature.
365:566–568. 1993. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gambari R: Peptide-nucleic acids (PNAs): a
tool for the development of gene expression modifiers. Curr Pharm
Des. 7:1839–1862. 2001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gambari R, Terada M, Bank A, Rifkind RA
and Marks PA: Synthesis of globin mRNA in relation to the cell
cycle during induced murine erythroleukemia differentiation. Proc
Natl Acad Sci USA. 75:3801–3804. 1978. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gambari R, Marks PA and Rifkind RA: Murine
erythroleukemia cell differentiation: relationship of globin gene
expression and of prolongation of G1 to inducer effects during
G1/early S. Proc Natl Acad Sci USA. 76:4511–4515. 1979. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rutherford TR and Harrison PR: Globin
synthesis and erythroid differentiation in a Friend cell variant
deficient in heme synthesis. Proc Natl Acad Sci USA. 76:5660–5664.
1979. View Article : Google Scholar : PubMed/NCBI
|
40
|
Salvatori F, Cantale V, Breveglieri G,
Zuccato C, Finotti A, Bianchi N, Borgatti M, Feriotto G, Destro F,
Canella A, Breda L, Rivella S and Gambari R: Development of K562
cell clones expressing beta-globin mRNA carrying the beta039
thalassaemia mutation for the screening of correctors of stop-codon
mutations. Biotechnol Appl Biochem. 54:41–52. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fabbri E, Manicardi A, Tedeschi T, Sforza
S, Bianchi N, Brognara E, Finotti A, Breveglieri G, Borgatti M,
Corradini R, Marchelli R and Gambari R: Modulation of the
biological activity of microRNA-210 with peptide nucleic acids
(PNAs). ChemMedChem. 6:2192–2202. 2011. View Article : Google Scholar : PubMed/NCBI
|
42
|
Nastruzzi C, Cortesi R, Esposito E,
Gambari R, Borgatti M, Bianchi N, Feriotto G and Mischiati C:
Liposomes as carriers for DNA-PNA hybrids. J Control Release.
68:237–249. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Borgatti M, Breda L, Cortesi R, Nastruzzi
C, Romanelli A, Saviano M, Bianchi N, Mischiati C, Pedone C and
Gambari R: Cationic liposomes as delivery systems for
double-stranded PNA-DNA chimeras exhibiting decoy activity against
NF-kappaB transcription factors. Biochem Pharmacol. 64:609–616.
2002. View Article : Google Scholar : PubMed/NCBI
|
44
|
Brognara E, Fabbri E, Bianchi N, Finotti
A, Corradini R and Gambari R: Molecular methods for validation of
the biological activity of peptide nucleic acids targeting
microRNAs. Methods Mol Biol. 1095:165–176. 2014. View Article : Google Scholar
|
45
|
Brognara E, Fabbri E, Aimi F, Manicardi A,
Bianchi N, Finotti A, Breveglieri G, Borgatti M, Corradini R,
Marchelli R and Gambari R: Peptide nucleic acids targeting miR-221
modulate p27Kip1 expression in breast cancer MDA-MB-231
cells. Int J Oncol. 41:2119–2127. 2012.PubMed/NCBI
|
46
|
Bhatnagar P, Keefer JR, Casella JF,
Barron-Casella EA, Bean CJ, Hooper CW, Payne AB, Arking DE and
Debaun MR: Association between baseline fetal hemoglobin levels and
incidence of severe vaso-occlusive pain episodes in children with
sickle cell anemia. Pediatr Blood Cancer. 60:E125–E127. 2013.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Rodrigue CM, Arous N, Bachir D,
Smith-Ravin J, Romeo PH, Galacteros F and Garel MC: Resveratrol, a
natural dietary phytoalexin, possesses similar properties to
hydroxyurea towards erythroid differentiation. Br J Haematol.
113:500–507. 2001. View Article : Google Scholar : PubMed/NCBI
|