1
|
Chen L, Magliano DJ and Zimmet PZ: The
worldwide epidemiology of type 2 diabetes mellitus - present and
future perspectives. Nat Rev Endocrinol. 8:228–236. 2011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
de Zeeuw D, Parving HH and Henning RH:
Microalbuminuria as an early marker for cardiovascular disease. J
Am Soc Nephrol. 17:2100–2105. 2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Go AS, Chertow GM, Fan D, McCulloch CE and
Hsu CY: Chronic kidney disease and the risks of death,
cardiovascular events, and hospitalization. N Engl J Med.
351:1296–1305. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Magee GM, Bilous RW, Cardwell CR, Hunter
SJ, Kee F and Fogarty DG: Is hyperfiltration associated with the
future risk of developing diabetic nephropathy? A meta-analysis.
Diabetologia. 52:691–697. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Baynes JW: Role of oxidative stress in
development of complications in diabetes. Diabetes. 40:405–412.
1991. View Article : Google Scholar : PubMed/NCBI
|
6
|
Brownlee M, Cerami A and Vlassara H:
Advanced glycosylation end products in tissue and the biochemical
basis of diabetic complications. N Engl J Med. 318:1315–1321. 1988.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Koya D, Jirousek MR, Lin YW, Ishii H,
Kuboki K and King GL: Characterization of protein kinase C beta
isoform activation on the gene expression of transforming growth
factor-beta, extracellular matrix components, and prostanoids in
the glomeruli of diabetic rats. J Clin Invest. 100:115–126. 1997.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Dunlop M: Aldose reductase and the role of
the polyol pathway in diabetic nephropathy. Kidney Int Suppl.
77:S3–S12. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ziyadeh FN, Sharma K, Ericksen M and Wolf
G: Stimulation of collagen gene expression and protein synthesis in
murine mesangial cells by high glucose is mediated by autocrine
activation of transforming growth factor-beta. J Clin Invest.
93:536–542. 1994. View Article : Google Scholar : PubMed/NCBI
|
10
|
Singh DK, Winocour P and Farrington K:
Mechanisms of disease: the hypoxic tubular hypothesis of diabetic
nephropathy. Nat Clin Pract Nephrol. 4:216–226. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Miyata T and de Strihou Cv: Diabetic
nephropathy: a disorder of oxygen metabolism? Nat Rev Nephrol.
6:83–95. 2010. View Article : Google Scholar
|
12
|
Giacco F and Brownlee M: Oxidative stress
and diabetic complications. Circ Res. 107:1058–1070. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Kashihara N, Haruna Y, Kondeti VK and
Kanwar YS: Oxidative stress in diabetic nephropathy. Curr Med Chem.
17:4256–4269. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hakim FA and Pflueger A: Role of oxidative
stress in diabetic kidney disease. Med Sci Monit. 16:pp. RA37–RA48.
2010, PubMed/NCBI
|
15
|
Ha H, Hwang IA, Park JH and Lee HB: Role
of reactive oxygen species in the pathogenesis of diabetic
nephropathy. Diabetes Res Clin Pract. 82(Suppl 1): S42–S45. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Wu J, Zhang R, Torreggiani M, et al:
Induction of diabetes in aged C57B6 mice results in severe
nephropathy: an association with oxidative stress, endoplasmic
reticulum stress, and inflammation. Am J Pathol. 176:2163–2176.
2010. View Article : Google Scholar : PubMed/NCBI
|
17
|
Qi W, Mu J, Luo ZF, et al: Attenuation of
diabetic nephropathy in diabetes rats induced by streptozotocin by
regulating the endoplasmic reticulum stress inflammatory response.
Metabolism. 60:594–603. 2011. View Article : Google Scholar
|
18
|
Cybulsky AV, Takano T, Papillon J, Kitzler
TM and Bijian K: Endoplasmic reticulum stress in glomerular
epithelial cell injury. Am J Physiol Renal Physiol. 301:F496–F508.
2011. View Article : Google Scholar
|
19
|
Masini M, Bugliani M, Lupi R, et al:
Autophagy in human type 2 diabetes pancreatic beta cells.
Diabetologia. 52:1083–1086. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ebato C, Uchida T, Arakawa M, et al:
Autophagy is important in islet homeostasis and compensatory
increase of beta cell mass in response to high-fat diet. Cell
Metab. 8:325–332. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hartleben B, Gödel M, Meyer-Schwesinger C,
et al: Autophagy influences glomerular disease susceptibility and
maintains podocyte homeostasis in aging mice. J Clin Invest.
120:1084–1096. 2010. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Kimura T, Takabatake Y, Takahashi A, et
al: Autophagy protects the proximal tubule from degeneration and
acute ischemic injury. J Am Soc Nephrol. 22:902–913. 2011.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Jiang M, Liu K, Luo J and Dong Z:
Autophagy is a renoprotective mechanism during in vitro hypoxia and
in vivo ischemia-reper-fusion injury. Am J Pathol. 176:1181–1192.
2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kume S, Uzu T, Horiike K, et al: Calorie
restriction enhances cell adaptation to hypoxia through
Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J
Clin Invest. 120:1043–1055. 2010. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Ohsumi Y and Mizushima N: Two
ubiquitin-like conjugation systems essential for autophagy. Semin
Cell Dev Biol. 15:231–236. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xie Z and Klionsky DJ: Autophagosome
formation: core machinery and adaptations. Nat Cell Biol.
9:1102–1109. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Baggio LL and Drucker DJ: Biology of
incretins: GLP-1 and GIP. Gastroenterology. 132:2131–2157. 2007.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Farilla L, Hui H, Bertolotto C, et al:
Glucagon-like peptide-1 promotes islet cell growth and inhibits
apoptosis in Zucker diabetic rats. Endocrinology. 143:4397–4408.
2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nauck MA, Niedereichholz U, Ettler R, et
al: Glucagon-like peptide 1 inhibition of gastric emptying
outweighs its insulino-tropic effects in healthy humans. Am J
Physiol. 273:pp. E981–E988. 1997, PubMed/NCBI
|
30
|
Turton MD, O’Shea D, Gunn I, et al: A role
for glucagon-like peptide-1 in the central regulation of feeding.
Nature. 379:69–72. 1996. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Bullock BP, Heller RS and Habener JF:
Tissue distribution of messenger ribonucleic acid encoding the rat
glucagon-like peptide-1 receptor. Endocrinology. 137:2968–2978.
1996.PubMed/NCBI
|
32
|
Wajcberg E and Amarah A: Liraglutide in
the management of type 2 diabetes. Drug Des Devel Ther. 4:279–290.
2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hayes MR, Kanoski SE, Alhadeff AL and
Grill HJ: Comparative effects of the long-acting GLP-1 receptor
ligands, liraglutide and exendin-4, on food intake and body weight
suppression in rats. Obesity (Silver Spring). 19:1342–1349. 2011.
View Article : Google Scholar
|
34
|
Sugimoto H, Shikata K, Hirata K, et al:
Increased expression of intercellular adhesion molecule-1 (ICAM-1)
in diabetic rat glomeruli: glomerular hyperfiltration is a
potential mechanism of ICAM-1 upregulation. Diabetes. 46:2075–2081.
1997. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mizushima N, Levine B, Cuervo AM and
Klionsky DJ: Autophagy fights disease through cellular
self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Martinet W and De Meyer GR: Autophagy in
atherosclerosis: a cell survival and death phenomenon with
therapeutic potential. Circ Res. 104:304–317. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang H, Kong X, Kang J, et al: Oxidative
stress induces parallel autophagy and mitochondria dysfunction in
human glioma U251 cells. Toxicol Sci. 110:376–388. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kiyono K, Suzuki HI, Matsuyama H, et al:
Autophagy is activated by TGF-beta and potentiates
TGF-beta-mediated growth inhibition in human hepatocellular
carcinoma cells. Cancer Res. 69:8844–8852. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kawakami T, Inagi R, Takano H, et al:
Endoplasmic reticulum stress induces autophagy in renal proximal
tubular cells. Nephrol Dial Transplant. 24:2665–2672. 2009.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Marsh BJ, Soden C, Alarcón C, et al:
Regulated autophagy controls hormone content in secretory-deficient
pancreatic endocrine beta-cells. Mol Endocrinol. 21:2255–2269.
2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Law BY, Wang M, Ma DL, et al: Alisol B, a
novel inhibitor of the sarcoplasmic/endoplasmic reticulum Ca(2+)
ATPase pump, induces autophagy, endoplasmic reticulum stress, and
apoptosis. Mol Cancer Ther. 9:718–730. 2010. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhu J, Wang KZ and Chu CT: After the
banquet: mitochondrial biogenesis, mitophagy, and cell survival.
Autophagy. 9:1663–1676. 2013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Petersen M, Hofius D and Andersen SU:
Signaling unmasked: Autophagy and catalase promote programmed cell
death. Autophagy. 10:520–521. 2014. View Article : Google Scholar : PubMed/NCBI
|