The role of hypoxia in inflammatory disease (Review)
- Authors:
- John Biddlestone
- Daniel Bandarra
- Sonia Rocha
-
Affiliations: Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK - Published online on: January 27, 2015 https://doi.org/10.3892/ijmm.2015.2079
- Pages: 859-869
-
Copyright: © Biddlestone et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Semenza GL: Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 24:97–106. 2009. View Article : Google Scholar | |
Semenza GL: HIF-1 and human disease: One highly involved factor. Genes Dev. 14:1983–1991. 2000.PubMed/NCBI | |
Perkins ND: The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer. 12:121–132. 2012.PubMed/NCBI | |
Thornton RD, Lane P, Borghaei RC, Pease EA, Caro J and Mochan E: Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochem J. 350:307–312. 2000. View Article : Google Scholar : PubMed/NCBI | |
Taylor CT: Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. J Physiol. 586:4055–4059. 2008. View Article : Google Scholar : PubMed/NCBI | |
Näthke I and Rocha S: Antagonistic crosstalk between APC and HIF-1α. Cell Cycle. 10:1545–1547. 2011. View Article : Google Scholar | |
Semenza GL and Wang GL: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 12:5447–5454. 1992.PubMed/NCBI | |
Wang GL, Jiang BH, Rue EA and Semenza GL: Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 92:5510–5514. 1995. View Article : Google Scholar | |
Carroll VA and Ashcroft M: Role of hypoxia-inducible factor (HIF)-1alpha versus HIF-2alpha in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von Hippel-Lindau function: Implications for targeting the HIF pathway. Cancer Res. 66:6264–6270. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Schmid T, Schnitzer S and Brüne B: Tumor hypoxia and cancer progression. Cancer Lett. 237:10–21. 2006. View Article : Google Scholar | |
Patel SA and Simon MC: Biology of hypoxia-inducible factor-2alpha in development and disease. Cell Death Differ. 15:628–634. 2008. View Article : Google Scholar : PubMed/NCBI | |
Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A and Poellinger L: Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature. 414:550–554. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yamashita T, Ohneda O, Nagano M, et al: Abnormal heart development and lung remodeling in mice lacking the hypoxia-inducible factor-related basic helix-loop-helix PAS protein NEPAS. Mol Cell Biol. 28:1285–1297. 2008. View Article : Google Scholar : | |
Zhang P, Yao Q, Lu L, Li Y, Chen PJ and Duan C: Hypoxia-inducible factor 3 is an oxygen-dependent transcription activator and regulates a distinct transcriptional response to hypoxia. Cell Rep. 6:1110–1121. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bárdos JI and Ashcroft M: Negative and positive regulation of HIF-1: A complex network. Biochim Biophys Acta. 1755:107–120. 2005.PubMed/NCBI | |
Rocha S: Gene regulation under low oxygen: Holding your breath for transcription. Trends Biochem Sci. 32:389–397. 2007. View Article : Google Scholar : PubMed/NCBI | |
Qin C, Wilson C, Blancher C, Taylor M, Safe S and Harris AL: Association of ARNT splice variants with estrogen receptor-negative breast cancer, poor induction of vascular endothelial growth factor under hypoxia, and poor prognosis. Clin Cancer Res. 7:818–823. 2001.PubMed/NCBI | |
Kaelin WG Jr and Ratcliffe PJ: Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI | |
Haase VH: Renal cancer: Oxygen meets metabolism. Exp Cell Res. 318:1057–1067. 2012. View Article : Google Scholar : PubMed/NCBI | |
Berra E, Benizri E, Ginouvès A, Volmat V, Roux D and Pouysségur J: HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 22:4082–4090. 2003. View Article : Google Scholar : PubMed/NCBI | |
Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ and Gleadle JM: Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 279:38458–38465. 2004. View Article : Google Scholar : PubMed/NCBI | |
Epstein AC, Gleadle JM, McNeill LA, et al: C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 107:43–54. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fandrey J, Gorr TA and Gassmann M: Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res. 71:642–651. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bruegge K, Jelkmann W and Metzen E: Hydroxylation of hypoxia-inducible transcription factors and chemical compounds targeting the HIF-alpha hydroxylases. Curr Med Chem. 14:1853–1862. 2007. View Article : Google Scholar : PubMed/NCBI | |
Frede S, Stockmann C, Freitag P and Fandrey J: Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-kappaB. Biochem J. 396:517–527. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG Jr: HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science. 292:464–468. 2001. View Article : Google Scholar : PubMed/NCBI | |
Jaakkola P, Mole DR, Tian YM, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI | |
Yu F, White SB, Zhao Q and Lee FS: HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc Natl Acad Sci USA. 98:9630–9635. 2001. View Article : Google Scholar : PubMed/NCBI | |
Durán RV, MacKenzie ED, Boulahbel H, Frezza C, Heiserich L, Tardito S, Bussolati O, Rocha S, Hall MN and Gottlieb E: HIF-independent role of prolyl hydroxylases in the cellular response to amino acids. Oncogene. 32:4549–4556. 2013. View Article : Google Scholar : | |
Moser SC, Bensaddek D, Ortmann B, Maure JF, Mudie S, Blow JJ, Lamond AI, Swedlow JR and Rocha S: PHD1 links cell-cycle progression to oxygen sensing through hydroxylation of the centrosomal protein Cep192. Dev Cell. 26:381–392. 2013. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, Cole RN, Pandey A and Semenza GL: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell. 145:732–744. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xie L, Pi X, Mishra A, Fong G, Peng J and Patterson C: PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response. J Clin Invest. 122:2827–2836. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pugh CW, Tan CC, Jones RW and Ratcliffe PJ: Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc Natl Acad Sci USA. 88:10553–10557. 1991. View Article : Google Scholar | |
Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P and Giallongo A: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 271:32529–32537. 1996. View Article : Google Scholar : PubMed/NCBI | |
Schödel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ and Mole DR: High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 117:e207–e217. 2011. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 19:12–16. 2009. View Article : Google Scholar | |
Han YH, Xia L, Song LP, Zheng Y, Chen WL, Zhang L, Huang Y, Chen GQ and Wang LS: Comparative proteomic analysis of hypoxia-treated and untreated human leukemic U937 cells. Proteomics. 6:3262–3274. 2006. View Article : Google Scholar : PubMed/NCBI | |
Djidja MC, Chang J, Hadjiprocopis A, et al: Identification of hypoxia-regulated proteins using MALDI-mass spectrometry imaging combined with quantitative proteomics. J Proteome Res. 13:2297–2313. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U and Bondesson M: Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell. 9:617–628. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gordan JD, Bertout JA, Hu CJ, Diehl JA and Simon MC: HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 11:335–347. 2007. View Article : Google Scholar : PubMed/NCBI | |
An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV and Neckers LM: Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature. 392:405–408. 1998. View Article : Google Scholar : PubMed/NCBI | |
Perkins ND: Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol. 8:49–62. 2007. View Article : Google Scholar | |
No authors listed. Celebrating 25 years of NF-κB. Nat Immunol. 12:6812011. View Article : Google Scholar | |
Campbell KJ and Perkins ND: Regulation of NF-kappaB function. Biochem Soc Symp. 73:165–180. 2006.PubMed/NCBI | |
Wong D, Teixeira A, Oikonomopoulos S, et al: Extensive characterization of NF-κB binding uncovers non-canonical motifs and advances the interpretation of genetic functional traits. Genome Biol. 12:R702011. View Article : Google Scholar | |
Gilmore TD: The Rel/NF-kappaB signal transduction pathway: Introduction. Oncogene. 18:6842–6844. 1999. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Castranova V, Shi X and Demers LM: New insights into the role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin Chem. 45:7–17. 1999.PubMed/NCBI | |
Bandarra DR and Rocha S: A tale of two transcription factors: NF-κB and HIF crosstalk. OA Mol Cell Biol. 1:62013. View Article : Google Scholar | |
Gilmore TD: Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 25:6680–6684. 2006. View Article : Google Scholar : PubMed/NCBI | |
Perkins ND and Gilmore TD: Good cop, bad cop: The different faces of NF-kappaB. Cell Death Differ. 13:759–772. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aggarwal BB, Takada Y, Shishodia S, Gutierrez AM, Oommen OV, Ichikawa H, Baba Y and Kumar A: Nuclear transcription factor NF-kappa B: Role in biology and medicine. Indian J Exp Biol. 42:341–353. 2004.PubMed/NCBI | |
Hackett PH and Roach RC: High-altitude illness. N Engl J Med. 345:107–114. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hartmann G, Tschöp M, Fischer R, Bidlingmaier C, Riepl R, Tschöp K, Hautmann H, Endres S and Toepfer M: High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine. 12:246–252. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kim HL, Cho YS, Choi H, Chun YS, Lee ZH and Park JW: Hypoxia-inducible factor 1alpha is deregulated by the serum of rats with adjuvant-induced arthritis. Biochem Biophys Res Commun. 378:123–128. 2009. View Article : Google Scholar | |
Boyd HK, Lappin TR and Bell AL: Evidence for impaired erythropoietin response to anaemia in rheumatoid disease. Br J Rheumatol. 30:255–259. 1991. View Article : Google Scholar : PubMed/NCBI | |
Grenz A, Clambey E and Eltzschig HK: Hypoxia signaling during intestinal ischemia and inflammation. Curr Opin Crit Care. 18:178–185. 2012. View Article : Google Scholar : PubMed/NCBI | |
Eltzschig HK, Sitkovsky MV and Robson SC: Purinergic signaling during inflammation. N Engl J Med. 367:2322–2333. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bandarra D, Biddlestone J, Mudie S, Muller HA and Rocha S: Hypoxia activates IKK-NF-κB and the immune response in Drosophila melanogaster. Biosci Rep. 34:342014. View Article : Google Scholar | |
Bandarra D, Biddlestone J, Mudie S, Muller HA and Rocha S: HIF-1α restricts NF-κB dependent gene expression to control innate immunity signals. Dis Model Mech. Dec 15–2014.Epub ahead of print. | |
van Uden P, Kenneth NS, Webster R, Müller HA, Mudie S and Rocha S: Evolutionary conserved regulation of HIF-1β by NF-κB. PLoS Genet. 7:e10012852011. View Article : Google Scholar | |
van Uden P, Kenneth NS and Rocha S: Regulation of hypoxia-inducible factor-1alpha by NF-kappaB. Biochem J. 412:477–484. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xue X, Ramakrishnan S, Anderson E, Taylor M, Zimmermann EM, Spence JR, Huang S, Greenson JK and Shah YM: Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology. 145:831–841. 2013. View Article : Google Scholar : PubMed/NCBI | |
Karhausen J, Furuta GT, Tomaszewski JE, Johnson RS, Colgan SP and Haase VH: Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J Clin Invest. 114:1098–1106. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sewell KL and Trentham DE: Pathogenesis of rheumatoid arthritis. Lancet. 341:283–286. 1993. View Article : Google Scholar : PubMed/NCBI | |
Al-Shukaili AK and Al-Jabri AA: Rheumatoid arthritis, cytokines and hypoxia. What is the link. Saudi Med J. 27:1642–1649. 2006.PubMed/NCBI | |
Gaber T, Dziurla R, Tripmacher R, Burmester GR and Buttgereit F: Hypoxia inducible factor (HIF) in rheumatology: Low O2! See what HIF can do. Ann Rheum Dis. 64:971–980. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hueber W, Kidd BA, Tomooka BH, et al: Antigen microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis Rheum. 52:2645–2655. 2005. View Article : Google Scholar : PubMed/NCBI | |
van Baarsen LG, Wijbrandts CA, Rustenburg F, Cantaert T, van der Pouw Kraan TC, Baeten DL, Dijkmans BA, Tak PP and Verweij CL: Regulation of IFN response gene activity during infliximab treatment in rheumatoid arthritis is associated with clinical response to treatment. Arthritis Res Ther. 12:R112010. View Article : Google Scholar : PubMed/NCBI | |
van Wietmarschen HA, Dai W, van der Kooij AJ, et al: Characterization of rheumatoid arthritis subtypes using symptom profiles, clinical chemistry and metabolomics measurements. PLoS One. 7:e443312012. View Article : Google Scholar : PubMed/NCBI | |
Sweeney SE and Firestein GS: Signal transduction in rheumatoid arthritis. Curr Opin Rheumatol. 16:231–237. 2004. View Article : Google Scholar : PubMed/NCBI | |
Morel J and Berenbaum F: Signal transduction pathways: new targets for treating rheumatoid arthritis. Joint Bone Spine. 71:503–510. 2004. View Article : Google Scholar : PubMed/NCBI | |
Firestein GS and Manning AM: Signal transduction and transcription factors in rheumatic disease. Arthritis Rheum. 42:609–621. 1999. View Article : Google Scholar : PubMed/NCBI | |
Benito MJ, Murphy E, Murphy EP, van den Berg WB, FitzGerald O and Bresnihan B: Increased synovial tissue NF-kappa B1 expression at sites adjacent to the cartilage-pannus junction in rheumatoid arthritis. Arthritis Rheum. 50:1781–1787. 2004. View Article : Google Scholar : PubMed/NCBI | |
Handel ML, McMorrow LB and Gravallese EM: Nuclear factor-kappa B in rheumatoid synovium. Localization of p50 and p65. Arthritis Rheum. 38:1762–1770. 1995. View Article : Google Scholar : PubMed/NCBI | |
Müller-Ladner U, Pap T, Gay RE, Neidhart M and Gay S: Mechanisms of disease: The molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol. 1:102–110. 2005. View Article : Google Scholar | |
Simmonds RE and Foxwell BM: Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology (Oxford). 47:584–590. 2008. View Article : Google Scholar | |
Westra J, Molema G and Kallenberg CG: Hypoxia-inducible factor-1 as regulator of angiogenesis in rheumatoid arthritis -therapeutic implications. Curr Med Chem. 17:254–263. 2010. View Article : Google Scholar | |
Ryu JH, Chae CS, Kwak JS, et al: Hypoxia-inducible factor-2α is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biol. 12:e10018812014. View Article : Google Scholar | |
Hu F, Shi L, Mu R, et al: Hypoxia-inducible factor-1α and interleukin 33 form a regulatory circuit to perpetuate the inflammation in rheumatoid arthritis. PLoS One. 8:e726502013. View Article : Google Scholar | |
Brouwer E, Gouw AS, Posthumus MD, van Leeuwen MA, Boerboom AL, Bijzet J, Bos R, Limburg PC, Kallenberg CG and Westra J: Hypoxia inducible factor-1-alpha (HIF-1alpha) is related to both angiogenesis and inflammation in rheumatoid arthritis. Clin Exp Rheumatol. 27:945–951. 2009. | |
Muz B, Khan MN, Kiriakidis S and Paleolog EM: Hypoxia. The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Res Ther. 11:2012009. View Article : Google Scholar : PubMed/NCBI | |
Moniz S, Biddlestone J and Rocha S: Grow2: The HIF system, energy homeostasis and the cell cycle. Histol Histopathol. 29:589–600. 2014.PubMed/NCBI | |
Kenneth NS and Rocha S: Regulation of gene expression by hypoxia. Biochem J. 414:19–29. 2008. View Article : Google Scholar : PubMed/NCBI | |
Poonam P: The biology of oral tolerance and issues related to oral vaccine design. Curr Pharm Des. 13:2001–2007. 2007. View Article : Google Scholar : PubMed/NCBI | |
Podolsky DK: Inflammatory bowel disease. N Engl J Med. 347:417–429. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cummins EP, Doherty GA and Taylor CT: Hydroxylases as therapeutic targets in inflammatory bowel disease. Lab Invest. 93:378–383. 2013. View Article : Google Scholar : PubMed/NCBI | |
Abraham C and Cho JH: Inflammatory bowel disease. N Engl J Med. 361:2066–2078. 2009. View Article : Google Scholar : PubMed/NCBI | |
Giatromanolaki A, Sivridis E, Maltezos E, Papazoglou D, Simopoulos C, Gatter KC, Harris AL and Koukourakis MI: Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J Clin Pathol. 56:209–213. 2003. View Article : Google Scholar : PubMed/NCBI | |
Danese S, Dejana E and Fiocchi C: Immune regulation by microvascular endothelial cells: Directing innate and adaptive immunity, coagulation, and inflammation. J Immunol. 178:6017–6022. 2007. View Article : Google Scholar : PubMed/NCBI | |
Werth N, Beerlage C, Rosenberger C, et al: Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens. PLoS One. 5:e115762010. View Article : Google Scholar : PubMed/NCBI | |
Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, Fallon PG and Taylor CT: The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology. 134:156–165. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tambuwala MM, Cummins EP, Lenihan CR, et al: Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology. 139:2093–2101. 2010. View Article : Google Scholar : PubMed/NCBI | |
Louis NA, Hamilton KE, Kong T and Colgan SP: HIF-dependent induction of apical CD55 coordinates epithelial clearance of neutrophils. FASEB J. 19:950–959. 2005. View Article : Google Scholar : PubMed/NCBI | |
Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF and Colgan SP: Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest. 110:993–1002. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kong T, Westerman KA, Faigle M, Eltzschig HK and Colgan SP: HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J. 20:2242–2250. 2006. View Article : Google Scholar : PubMed/NCBI | |
Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB and Colgan SP: Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem. 99:1616–1627. 2006. View Article : Google Scholar : PubMed/NCBI | |
Furuta GT, Turner JR, Taylor CT, Hershberg RM, Comerford K, Narravula S, Podolsky DK and Colgan SP: Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J Exp Med. 193:1027–1034. 2001. View Article : Google Scholar : PubMed/NCBI | |
Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC and Colgan SP: Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62:3387–3394. 2002.PubMed/NCBI | |
Neurath MF, Pettersson S, Meyer zum Büschenfelde KH and Strober W: Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med. 2:998–1004. 1996. View Article : Google Scholar : PubMed/NCBI | |
Holtmann MH and Neurath MF: Differential TNF-signaling in chronic inflammatory disorders. Curr Mol Med. 4:439–444. 2004. View Article : Google Scholar : PubMed/NCBI | |
Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF and Karin M: IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 118:285–296. 2004. View Article : Google Scholar : PubMed/NCBI | |
Pasparakis M: IKK/NF-kappaB signaling in intestinal epithelial cells controls immune homeostasis in the gut. Mucosal Immunol. 1(Suppl 1): S54–S57. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zaph C, Troy AE, Taylor BC, et al: Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature. 446:552–556. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hauser CJ, Locke RR, Kao HW, Patterson J and Zipser RD: Visceral surface oxygen tension in experimental colitis in the rabbit. J Lab Clin Med. 112:68–71. 1988.PubMed/NCBI | |
Shah YM, Ito S, Morimura K, et al: Hypoxia-inducible factor augments experimental colitis through an MIF-dependent inflammatory signaling cascade. Gastroenterology. 134:2036–2048. 2048 e2031–2033. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hara H and Saito T: CARD9 versus CARMA1 in innate and adaptive immunity. Trends Immunol. 30:234–242. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Minamishima YA, Yan Q, Schlisio S, Ebert BL, Zhang X, Zhang L, Kim WY, Olumi AF and Kaelin WG Jr: pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. Mol Cell. 28:15–27. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, Johnson RS, Haddad GG and Karin M: NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 453:807–811. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bracken CP, Whitelaw ML and Peet DJ: Activity of hypoxia-inducible factor 2alpha is regulated by association with the NF-kappaB essential modulator. J Biol Chem. 280:14240–14251. 2005. View Article : Google Scholar : PubMed/NCBI | |
O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL and Baltimore D: Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 205:585–594. 2008. View Article : Google Scholar | |
Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P and Jain RK: Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 60:6248–6252. 2000.PubMed/NCBI | |
Shay JE, Imtiyaz HZ, Sivanand S, et al: Inhibition of hypoxia-inducible factors limits tumor progression in a mouse model of colorectal cancer. Carcinogenesis. 35:1067–1077. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rawluszko-Wieczorek AA, Horbacka K, Krokowicz P, Misztal M and Jagodzinski PP: Prognostic potential of DNA methylation and transcript levels of HIF1A and EPAS1 in colorectal cancer. Mol Cancer Res. 12:1112–1127. 2014. View Article : Google Scholar : PubMed/NCBI | |
Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC and Huang LE: HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J. 23:1949–1956. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Puig N, Veprintsev DB and Fersht AR: Binding of natively unfolded HIF-1alpha ODD domain to p53. Mol Cell. 17:11–21. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL and Bedi A: Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev. 14:34–44. 2000.PubMed/NCBI | |
Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY and Dewhirst MW: Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 8:99–110. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bertout JA, Majmundar AJ, Gordan JD, Lam JC, Ditsworth D, Keith B, Brown EJ, Nathanson KL and Simon MC: HIF2alpha inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proc Natl Acad Sci USA. 106:14391–14396. 2009. View Article : Google Scholar : PubMed/NCBI | |
Volm M and Koomägi R: Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res. 20:1527–1533. 2000.PubMed/NCBI | |
Evans AJ, Russell RC, Roche O, et al: VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol. 27:157–169. 2007. View Article : Google Scholar : | |
Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, Teng SC and Wu KJ: Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 10:295–305. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gort EH, van Haaften G, Verlaan I, et al: The TWIST1 oncogene is a direct target of hypoxia-inducible factor-2alpha. Oncogene. 27:1501–1510. 2008. View Article : Google Scholar | |
Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sahlgren C, Gustafsson MV, Jin S, Poellinger L and Lendahl U: Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA. 105:6392–6397. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lakatos PL and Lakatos L: Risk for colorectal cancer in ulcerative colitis: Changes, causes and management strategies. World J Gastroenterol. 14:3937–3947. 2008. View Article : Google Scholar : PubMed/NCBI | |
Munkholm P: Review article: The incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther. 18(Suppl 2): 1–5. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Majada V, Aguilera C, Villanueva A, et al: Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proc Natl Acad Sci USA. 104:276–281. 2007. View Article : Google Scholar : | |
Seril DN, Liao J, Yang GY and Yang CS: Oxidative stress and ulcerative colitis-associated carcinogenesis: Studies in humans and animal models. Carcinogenesis. 24:353–362. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sangha S, Yao M and Wolfe MM: Non-steroidal anti-inflammatory drugs and colorectal cancer prevention. Postgrad Med J. 81:223–227. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hoffmeister M, Chang-Claude J and Brenner H: Do older adults using NSAIDs have a reduced risk of colorectal cancer. Drugs Aging. 23:513–523. 2006. View Article : Google Scholar | |
Becker C, Fantini MC, Schramm C, et al: TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity. 21:491–501. 2004. View Article : Google Scholar : PubMed/NCBI | |
Greten FR, Arkan MC, Bollrath J, et al: NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 130:918–931. 2007. View Article : Google Scholar : PubMed/NCBI | |
Karin M, Cao Y, Greten FR and Li ZW: NF-kappaB in cancer: From innocent bystander to major culprit. Nat Rev Cancer. 2:301–310. 2002. View Article : Google Scholar : PubMed/NCBI | |
Richmond A: Nf-kappa B, chemokine gene transcription and tumour growth. Nat Rev Immunol. 2:664–674. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI | |
Schulze-Bergkamen H and Krammer PH: Apoptosis in cancer-implications for therapy. Semin Oncol. 31:90–119. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kucharczak J, Simmons MJ, Fan Y and Gélinas C: To be, or not to be: NF-kappaB is the answer - role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene. 22:8961–8982. 2003. View Article : Google Scholar : PubMed/NCBI | |
Luo JL, Kamata H and Karin M: IKK/NF-kappaB signaling: Balancing life and death - a new approach to cancer therapy. J Clin Invest. 115:2625–2632. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cornejo MG, Boggon TJ and Mercher T: JAK3: A two-faced player in hematological disorders. Int J Biochem Cell Biol. 41:2376–2379. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lin Q, Lai R, Chirieac LR, et al: Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: Inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol. 167:969–980. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tsareva SA, Moriggl R, Corvinus FM, Wiederanders B, Schütz A, Kovacic B and Friedrich K: Signal transducer and activator of transcription 3 activation promotes invasive growth of colon carcinomas through matrix metalloproteinase induction. Neoplasia. 9:279–291. 2007. View Article : Google Scholar : PubMed/NCBI | |
Guttridge DC, Albanese C, Reuther JY, Pestell RG and Baldwin AS Jr: NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol. 19:5785–5799. 1999.PubMed/NCBI | |
Chen C, Edelstein LC and Gélinas C: The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol. 20:2687–2695. 2000. View Article : Google Scholar : PubMed/NCBI | |
Baldwin AS: Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 107:241–246. 2001. View Article : Google Scholar : PubMed/NCBI | |
Choo MK, Sakurai H, Kim DH and Saiki I: A ginseng saponin metabolite suppresses tumor necrosis factor-α-promoted metastasis by suppressing nuclear factor-κB signaling in murine colon cancer cells. Oncol Rep. 19:595–600. 2008.PubMed/NCBI | |
Thomasova D, Mulay SR, Bruns H and Anders HJ: p53-independent roles of MDM2 in NF-κB signaling: Implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia. 14:1097–1101. 2012. | |
Puvvada SD, Funkhouser WK, Greene K, Deal A, Chu H, Baldwin AS, Tepper JE and O’Neil BH: NF-κB and Bcl-3 activation are prognostic in metastatic colorectal cancer. Oncology. 78:181–188. 2010. View Article : Google Scholar : | |
Kwon HC, Kim SH, Oh SY, et al: Clinicopathological significance of nuclear factor-kappa B, HIF-1 alpha, and vascular endothelial growth factor expression in stage III colorectal cancer. Cancer Sci. 101:1557–1561. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu Y and Zhou BP: TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 102:639–644. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schwitalla S, Ziegler PK, Horst D, et al: Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell. 23:93–106. 2013. View Article : Google Scholar : PubMed/NCBI | |
Terzic J, Grivennikov S, Karin E and Karin M: Inflammation and colon cancer. Gastroenterology. 138:2101–2114. e21052010. View Article : Google Scholar : PubMed/NCBI | |
Newton IP, Kenneth NS, Appleton PL, Näthke I and Rocha S: Adenomatous polyposis coli and hypoxia-inducible factor-1{alpha} have an antagonistic connection. Mol Biol Cell. 21:3630–3638. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bienz M and Clevers H: Linking colorectal cancer to Wnt signaling. Cell. 103:311–320. 2000. View Article : Google Scholar : PubMed/NCBI | |
McCartney BM and Näthke IS: Cell regulation by the Apc protein Apc as master regulator of epithelia. Curr Opin Cell Biol. 20:186–193. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wen D, Zhang N, Shan B and Wang S: Helicobacter pylori infection may be implicated in the topography and geographic variation of upper gastrointestinal cancers in the Taihang Mountain high-risk region in northern China. Helicobacter. 15:416–421. 2010. View Article : Google Scholar : PubMed/NCBI | |
Krüger B, Krick S, Dhillon N, et al: Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci USA. 106:3390–3395. 2009. View Article : Google Scholar : PubMed/NCBI |