1
|
Zouboulis CC: Acne and sebaceous gland
function. Clin Dermatol. 22:360–366. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Schneider MR, Schmidt-Ullrich R and Paus
R: The hair follicle as a dynamic miniorgan. Curr Biol.
19:R132–R142. 2009. View Article : Google Scholar : PubMed/NCBI
|
3
|
Downie MM and Kealey T: Lipogenesis in the
human sebaceous gland: glycogen and glycerophosphate are substrates
for the synthesis of sebum lipids. J Invest Dermatol. 111:199–205.
1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Georgel P, Crozat K, Lauth X, et al: A
toll-like receptor 2-responsive lipid effector pathway protects
mammals against skin infections with gram-positive bacteria. Infect
Immun. 73:4512–4521. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Smith KR and Thiboutot DM: Thematic review
series: skin lipids. Sebaceous gland lipids: friend or foe? J Lipid
Res. 49:271–281. 2008. View Article : Google Scholar
|
6
|
Schneider MR and Paus R: Sebocytes,
multifaceted epithelial cells: lipid production and holocrine
secretion. Int J Biochem Cell Biol. 42:181–185. 2010. View Article : Google Scholar
|
7
|
Rivera AE: Acne scarring: a review and
current treatment modalities. J Am Acad Dermatol. 59:659–676. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Goldstein JA, Socha-Szott A, Thomsen RJ,
Pochi PE, Shalita AR and Strauss JS: Comparative effect of
isotretinoin and etretinate on acne and sebaceous gland secretion.
J Am Acad Dermatol. 6(4 Pt 2 Suppl): 760–765. 1982. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zouboulis CC, Chen WC, Thornton MJ, Qin K
and Rosenfield R: Sexual hormones in human skin. Horm Metab Res.
39:85–95. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Nelson AM, Gilliland KL, Cong Z and
Thiboutot DM: 13-cis Retinoic acid induces apoptosis and cell cycle
arrest in human SEB-1 sebocytes. J Invest Dermatol. 126:2178–2189.
2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rosenfield RL, Kentsis A, Deplewski D and
Ciletti N: Rat preputial sebocyte differentiation involves
peroxisome proliferator-activated receptors. J Invest Dermatol.
112:226–232. 1999. View Article : Google Scholar : PubMed/NCBI
|
12
|
Deplewski D, Qin K, Ciletti N and
Rosenfield RL: Unique mode of lipogenic activation in rat preputial
sebocytes. J Nutr Metab. 2011:1636312011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rosenfield RL, Deplewski D and Greene ME:
Peroxisome proliferator-activated receptors and skin development.
Horm Res. 54:269–274. 2000. View Article : Google Scholar
|
14
|
Deplewski D and Rosenfield RL: Role of
hormones in pilosebaceous unit development. Endocr Rev. 21:363–392.
2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Smith TM, Cong Z, Gilliland KL, Clawson GA
and Thiboutot DM: Insulin-like growth factor-1 induces lipid
production in human SEB-1 sebocytes via sterol response
element-binding protein-1. J Invest Dermatol. 126:1226–1232. 2006.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Smith TM, Gilliland K, Clawson GA and
Thiboutot D: IGF-1 induces SREBP-1 expression and lipogenesis in
SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt
pathway. J Invest Dermatol. 128:1286–1293. 2008. View Article : Google Scholar
|
17
|
Decraene D, Agostinis P, Bouillon R,
Degreef H and Garmyn M: Insulin-like growth factor-1-mediated AKT
activation postpones the onset of ultraviolet B-induced apoptosis,
providing more time for cyclobutane thymine dimer removal in
primary human keratinocytes. J Biol Chem. 277:32587–32595. 2002.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Blumer KJ and Johnson GL: Diversity in
function and regulation of MAP kinase pathways. Trends Biochem Sci.
19:236–240. 1994. View Article : Google Scholar : PubMed/NCBI
|
19
|
Franke TF, Kaplan DR and Cantley LC: PI3K:
downstream AKTion blocks apoptosis. Cell. 88:435–437. 1997.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Choi JJ, Park MY, Lee HJ, et al: TNF-α
increases lipogenesis via JNK and PI3K/Akt pathways in SZ95 human
sebocytes. J Dermatol Sci. 65:179–188. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Soleas GJ, Diamandis EP and Goldberg DM:
Resveratrol: a molecule whose time has come? And gone? Clin
Biochem. 30:91–113. 1997. View Article : Google Scholar : PubMed/NCBI
|
22
|
Jang M, Cai L, Udeani GO, et al: Cancer
chemopreventive activity of resveratrol, a natural product derived
from grapes. Science. 275:218–220. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Clement MV, Hirpara JL, Chawdhury SH and
Pervaiz S: Chemopreventive agent resveratrol, a natural product
derived from grapes, triggers CD95 signaling-dependent apoptosis in
human tumor cells. Blood. 92:996–1002. 1998.PubMed/NCBI
|
24
|
Park JW, Choi YJ, Jang MA, et al:
Chemopreventive agent resveratrol, a natural product derived from
grapes, reversibly inhibits progression through S and G2 phases of
the cell cycle in U937 cells. Cancer Lett. 163:43–49. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Hsieh TC, Juan G, Darzynkiewicz Z and Wu
JM: Resveratrol increases nitric oxide synthase, induces
accumulation of p53 and p21(WAF1/CIP1), and suppresses cultured
bovine pulmonary artery endothelial cell proliferation by
perturbing progression through S and G2. Cancer Res. 59:2596–2601.
1999.PubMed/NCBI
|
26
|
Ragione FD, Cucciolla V, Borriello A, et
al: Resveratrol arrests the cell division cycle at S/G2 phase
transition. Biochem Biophys Res Commun. 250:53–58. 1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wolter F, Akoglu B, Clausnitzer A and
Stein J: Downregulation of the cyclin D1/Cdk4 complex occurs during
resveratrol-induced cell cycle arrest in colon cancer cell lines. J
Nutr. 131:2197–2203. 2001.PubMed/NCBI
|
28
|
Vergara D, Simeone P, Toraldo D, et al:
Resveratrol downregulates Akt/GSK and ERK signalling pathways in
OVCAR-3 ovarian cancer cells. Mol Biosyst. 8:1078–1087. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zou J, Huang Y, Chen Q, et al: Suppression
of mitogenesis and regulation of cell cycle traverse by resveratrol
in cultured smooth muscle cells. Int J Oncol. 15:647–651.
1999.PubMed/NCBI
|
30
|
Holian O and Walter RJ: Resveratrol
inhibits the proliferation of normal human keratinocytes in vitro.
J Cell Biochem Suppl (Suppl). 36:55–62. 2001. View Article : Google Scholar
|
31
|
Rayalam S, Yang JY, Ambati S, Della-Fera
MA and Baile CA: Resveratrol induces apoptosis and inhibits
adipogenesis in 3T3-L1 adipocytes. Phytother Res. 22:1367–1371.
2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Arichi H, Kimura Y, Okuda H, Baba K,
Kozawa M and Arichi S: Effects of stilbene components of the roots
of Polygonum cuspidatum Sieb et Zucc on lipid metabolism. Chem
Pharm Bull (Tokyo). 30:1766–1770. 1982. View Article : Google Scholar
|
33
|
Picard F, Kurtev M, Chung N, et al: Sirt1
promotes fat mobilization in white adipocytes by repressing
PPAR-gamma. Nature. 429:771–776. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zouboulis CC, Seltmann H, Neitzel H and
Orfanos CE: Establishment and characterization of an immortalized
human sebaceous gland cell line (SZ95). J Invest Dermatol.
113:1011–1020. 1999. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zouboulis CC and Degitz K: Androgen action
on human skin-from basic research to clinical significance. Exp
Dermatol. 13(Suppl 4): 5–10. 2004. View Article : Google Scholar
|
36
|
Zouboulis CC, Schagen S and Alestas T: The
sebocyte culture: a model to study the pathophysiology of the
sebaceous gland in sebostasis, seborrhoea and acne. Arch Dermatol
Res. 300:397–413. 2008. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wróbel A, Seltmann H, Fimmel S, et al:
Differentiation and apoptosis in human immortalized sebocytes. J
Invest Dermatol. 120:175–181. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Iwata C, Akimoto N, Sato T, Morokuma Y and
Ito A: Augmentation of lipogenesis by 15-deoxy-Delta12,
14-prostaglandin J2 in hamster sebaceous glands: identification of
cytochrome P-450-mediated 15-deoxy-Delta12, 14-prostaglandin J2
production. J Invest Dermatol. 125:865–872. 2005. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ahmad N, Feyes DK, Nieminen AL, Agarwal R
and Mukhtar H: Green tea constituent epigallocatechin-3-gallate and
induction of apoptosis and cell cycle arrest in human carcinoma
cells. J Natl Cancer Inst. 89:1881–1886. 1997. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sugikawa E, Hosoi T, Yazaki N, Gamanuma M,
Nakanishi N and Ohashi M: Mutant p53 mediated induction of cell
cycle arrest and apoptosis at G1 phase by 9-hydroxyellipticine.
Anticancer Res. 19:3099–3108. 1999.
|
41
|
Vermeulen K, Van Bockstaele DR and
Berneman ZN: The cell cycle: a review of regulation, deregulation
and therapeutic targets in cancer. Cell Prolif. 36:131–149. 2003.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Xiangming C, Hokita S, Natsugoe S, et al:
p21 expression is a prognostic factor in patients with p53-negative
gastric cancer. Cancer Lett. 148:181–188. 2000. View Article : Google Scholar : PubMed/NCBI
|
43
|
Tessitore L, Davit A, Sarotto I and
Caderni G: Resveratrol depresses the growth of colorectal aberrant
crypt foci by affecting bax and p21(CIP) expression.
Carcinogenesis. 21:1619–1622. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ahmad N, Adhami VM, Afaq F, Feyes DK and
Mukhtar H: Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest
of cell cycle and induction of apoptosis in human epidermoid
carcinoma A431 cells. Clin Cancer Res. 7:1466–1473. 2001.PubMed/NCBI
|
45
|
Marshall CJ: Specificity of receptor
tyrosine kinase signaling: transient versus sustained extracellular
signal-regulated kinase activation. Cell. 80:179–185. 1995.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Karpova AY, Abe MK, Li J, et al: MEK1 is
required for PDGF-induced ERK activation and DNA synthesis in
tracheal myocytes. AmXJ Physiol. 272:L558–L565. 1997.
|
47
|
Wu Z, Uchi H, Morino-Koga S, Shi W and
Furue M: Resveratrol inhibition of human keratinocyte proliferation
via SIRT1/ARNT/ERK dependent downregulation of aquaporin 3. J
Dermatol Sci. 75:16–23. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Schuster M, Zouboulis CC, Ochsendorf F, et
al: Peroxisome proliferator-activated receptor activators protect
sebocytes from apoptosis: a new treatment modality for acne? Br J
Dermatol. 164:182–186. 2011. View Article : Google Scholar
|
49
|
Rosen ED, Sarraf P, Troy AE, et al: PPAR
gamma is required for the differentiation of adipose tissue in vivo
and in vitro. Mol Cell. 4:611–617. 1999. View Article : Google Scholar : PubMed/NCBI
|
50
|
Rosenfield RL, Deplewski D, Kentsis A and
Ciletti N: Mechanisms of androgen induction of sebocyte
differentiation. Dermatology. 196:43–46. 1998. View Article : Google Scholar : PubMed/NCBI
|
51
|
Kim SP, Ha JM, Yun SJ, et al:
Transcriptional activation of peroxisome proliferator-activated
receptor-gamma requires activation of both protein kinase A and Akt
during adipocyte differentiation. Biochem Biophys Res Commun.
399:55–59. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Floyd ZE, Wang ZQ, Kilroy G and Cefalu WT:
Modulation of peroxisome proliferator-activated receptor gamma
stability and transcriptional activity in adipocytes by
resveratrol. Metabolism. 57(7 Suppl 1): S32–S38. 2008. View Article : Google Scholar : PubMed/NCBI
|
53
|
Docherty JJ, McEwen HA, Sweet TJ, Bailey E
and Booth TD: Resveratrol inhibition of Propionibacterium acnes. J
Antimicrob Chemother. 59:1182–1184. 2007. View Article : Google Scholar : PubMed/NCBI
|
54
|
McNairn AJ, Doucet Y, Demaude J, et al:
TGFβ signaling regulates lipogenesis in human sebaceous glands
cells. BMC Dermatol. 13:22013. View Article : Google Scholar
|
55
|
Dozsa A, Dezso B, Toth BI, et al:
PPARγ-mediated and arachidonic acid-dependent signaling is involved
in differentiation and lipid production of human sebocytes. J
Invest Dermatol. 134:910–920. 2014. View Article : Google Scholar
|