1
|
Sena CM, Pereira AM and Seiça R:
Endothelial dysfunction - a major mediator of diabetic vascular
disease. Biochim Biophys Acta. 1832:2216–2231. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wei DH, Zhang XL, Wang R, et al: Oxidized
lipoprotein(a) increases endothelial cell monolayer permeability
via ROS generation. Lipids. 48:579–586. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rajendran P, Rengarajan T, Thangavel J,
Nishigaki Y, Sakthisekaran D, Sethi G and Nishigaki I: The vascular
endo-thelium and human diseases. Int J Biol Sci. 10:1057–1069.
2013. View Article : Google Scholar
|
4
|
Li H, Horke S and Förstermann U: Oxidative
stress in vascular disease and its pharmacological prevention.
Trends Pharmacol Sci. 34:313–319. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Walker AE, Kaplon RE, Lucking SM,
Russell-Nowlan MJ, Eckel RH and Seals DR: Fenofibrate improves
vascular endothelial function by reducing oxidative stress while
increasing endothelial nitric oxide synthase in healthy
normolipidemic older adults. Hypertension. 60:1517–1523. 2012.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Lerman A and Zeiher AM: Endothelial
function: cardiac events. Circulation. 111:363–368. 2005.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Paneni F, Osto E, Costantino S, et al:
Deletion of the activated protein-1 transcription factor JunD
induces oxidative stress and accelerates age-related endothelial
dysfunction. Circulation. 127:1229–1240. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sharma S, Sun X, Agarwal S, Rafikov R,
Dasarathy S, Kumar S and Black SM: Role of carnitine acetyl
transferase in regulation of nitric oxide signaling in pulmonary
arterial endothelial cells. Int J Mol Sci. 14:255–272. 2012.
View Article : Google Scholar
|
9
|
Takuwa Y, Okamoto Y, Yoshioka K and Takuwa
N: Sphingosine-1-phosphate signaling and biological activities in
the cardiovascular system. Biochim Biophys Acta. 1781:483–488.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yatomi Y: Sphingosine 1-phosphate in
vascular biology: possible therapeutic strategies to control
vascular diseases. Curr Pharm Des. 12:575–587. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Spiegel S and Milstien S: Sphingosine
1-phosphate, a key cell signaling molecule. J Biol Chem.
227:25851–25854. 2002. View Article : Google Scholar
|
12
|
Rosen H, Stevens RC, Hanson M, Roberts E
and Oldstone MB: Sphingosine-1-phosphate and its receptors:
structure, signaling, and influence. Annu Rev Biochem. 82:637–662.
2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lu H, Yuan H, Chen S, et al: Senescent
endothelial dysfunction is attributed to the up-regulation of
sphingosine-1-phosphate receptor-2 in aged rats. Mol Cell Biochem.
363:217–224. 2012. View Article : Google Scholar
|
14
|
Lee JF, Gordon S, Estrada R, et al:
Balance of S1P1 and S1P2 signaling regulates peripheral
microvascular permeability in rat cremaster muscle vasculature. Am
J Physiol Heart Circ Physiol. 296:H33–H42. 2009. View Article : Google Scholar :
|
15
|
Estrada R, Zeng Q, Lu H, et al:
Up-regulating sphin-gosine-1-phosphate receptor-2 signaling impairs
chemotactic, wound-healing, and morphogenetic responses in
senescent endothelial cells. J Biol Chem. 283:30363–30375. 2008.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu W, Lan T, Xie X, et al: S1P2 receptor
mediates sphin-gosine-1-phosphate-induced fibronectin expression
via MAPK signaling pathway in mesangial cells under high glucose
condition. Exp Cell Res. 318:936–943. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Takuwa N, Ohkura S, Takashima S, et al:
S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic
mice involves reactive oxygen species. Cardiovasc Res. 85:484–493.
2010. View Article : Google Scholar :
|
18
|
Beckman JA, Creager MA and Libby P:
Diabetes and atherosclerosis: epidemiology, pathophysiology, and
management. JAMA. 15:2570–2581. 2002. View Article : Google Scholar
|
19
|
Nesto RW: Correlation between
cardiovascular disease and diabetes mellitus: current concepts. Am
J Med. 116(Suppl 1): 11–22. 2004. View Article : Google Scholar
|
20
|
Félétou M and Vanhoutte PM: Endothelial
dysfunction: a multifaceted disorder (the Wiggers award lecture).
Am J Physiol Heart Circ Physiol. 291:H985–H1002. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Endemann DH and Schiffrin EL: Endothelial
dysfunction. J Am Soc Nephrol. 15:1983–1992. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wheatcroft SB, Williams IL, Shah AM and
Kearney MT: Pathophysiological implications of insulin resistance
on vascular endothelial function. Diabet Med. 20:255–268. 2003.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Novella S, Dantas AP, Segarra G, et al:
Aging-related endothelial dysfunction in the aorta from female
senescence-accelerated mice is associated with decreased nitric
oxide synthase expression. Exp Gerontol. 48:1329–1337. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lesniewski LA, Zigler MC, Durrant JR,
Donato AJ and Seals DR: Sustained activation of AMPK ameliorates
age-associated vascular endothelial dysfunction via a nitric
oxide-independent mechanism. Mech Ageing Dev. 133:368–371. 2012.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Wilk G, Osmenda G, Matusik P, et al:
Endothelial function assessment in atherosclerosis: comparison of
brachial artery flow-mediated vasodilation and peripheral arterial
tonometry. Pol Arch Med Wewn. 123:443–452. 2013.
|
26
|
Ragino YI, Chernjavski AM, Polonskaya YV,
Volkov AM, Kashtanova EV, Tikhonov AV and Tcimbal SY: Oxidation and
endothelial dysfunction biomarkers of atherosclerotic plaque
instability. Studies of the vascular wall and blood. Bull Exp Biol
Med. 153:331–335. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee S, Zhang H, Chen J, Dellsperger KC,
Hill MA and Zhang C: Adiponectin abates diabetes-induced
endothelial dysfunction by suppressing oxidative stress, adhesion
molecules, and inflammation in type 2 diabetic mice. Am J Physiol
Heart Circ Physiol. 303:H106–H115. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cho YE, Basu A, Dai A, Heldak M and Makino
A: Coronary endothelial dysfunction and mitochondrial reactive
oxygen species in type 2 diabetic mice. Am J Physiol Cell Physiol.
305:C1033–C1040. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shen GX: Mitochondrial dysfunction,
oxidative stress and diabetic cardiovascular disorders. Cardiovasc
Hematol Disord Drug Targets. 12:106–112. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Patel H, Chen J, Das KC and Kavdia M:
Hyperglycemia induces differential change in oxidative stress at
gene expression and functional levels in HUVEC and HMVEC.
Cardiovasc Diabetol. 12:142–155. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Karbach S, Jansen T, Horke S, et al:
Hyperglycemia and oxidative stress in cultured endothelial cells -
a comparison of primary endothelial cells with an immortalized
endothelial cell line. J Diabetes Complications. 26:155–162. 2012.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu Y, Saiyan S, Men TY, et al:
Hepatopoietin Cn reduces ethanol-induced hepatoxicity via
sphingosine kinase 1 and sphingosine 1-phosphate receptors. J
Pathol. 230:365–376. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nakahara T, Iwase A, Nakamura T, et al:
Sphingosine-1-phosphate inhibits H2O2-induced granulosa cell
apoptosis via the PI3K/Akt signaling pathway. Fertil Steril.
98:1001–1008. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Krump-Konvalinkova V, Yasuda S, Rubic T,
et al: Stable knockdown of the sphingosine 1-phosphate receptor
S1P1 influences multiple functions of human endothelial cells.
Arterioscler Thromb Vasc Biol. 25:546–552. 2005. View Article : Google Scholar
|
35
|
Whetzel AM, Bolick DT, Srinivasan S,
Macdonald TL, Morris MA, Ley K and Hedrick CC: Sphingosine-1
phosphate prevents monocyte/endothelial interactions in type 1
diabetic NOD mice through activation of the S1P1 receptor. Circ
Res. 99:731–739. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Whetzel AM, Bolick DT and Hedrick CC:
Sphingosine-1-phosphate inhibits high glucose-mediated ERK1/2
action in endothelium through induction of MAP kinase
phosphatase-3. Am J Physiol Cell Physiol. 296:C339–C345. 2009.
View Article : Google Scholar :
|
37
|
Imasawa T, Kitamura H, Ohkawa R, Satoh Y,
Miyashita A and Yatomi Y: Unbalanced expression of sphingosine
1-phosphate receptors in diabetic nephropathy. Exp Toxicol Pathol.
62:53–60. 2010. View Article : Google Scholar
|