1
|
Fernandes AM, Herlofsen SR, Karlsen TA,
Küchler AM, Fløisand Y and Brinchmann JE: Similar properties of
chondrocytes from osteoarthritis joints and mesenchymal stem cells
from healthy donors for tissue engineering of articular cartilage.
PLoS One. 8:e629942013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Dreier R: Hypertrophic differentiation of
chondrocytes in osteoarthritis: the developmental aspect of
degenerative joint disorders. Arthritis Res Ther. 12:2162010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Tanaka Y, Ogasawara T, Asawa Y, Yamaoka H,
Nishizawa S, Mori Y, Takato T and Hoshi K: Growth factor contents
of autologous human sera prepared by different production methods
and their biological effects on chondrocytes. Cell Biol Int.
32:505–514. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lowell CA and Mayadas TN: Overview:
studying integrins in vivo. Methods Mol Biol. 757:369–397. 2012.
View Article : Google Scholar
|
5
|
Brakebusch C, Bouvard D, Stanchi F, Sakai
T and Fassler R: Integrins in invasive growth. J Clin Invest.
109:999–1006. 2002. View Article : Google Scholar : PubMed/NCBI
|
6
|
Spiteri C, Raizman I, Pilliar RM and
Kandel RA: Matrix accumulation by articular chondrocytes during
mechanical stimulation is influenced by integrin-mediated cell
spreading. J Biomed Mater Res A. 94:122–129. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Premont RT, Claing A, Vitale N, Freeman
JL, Pitcher JA, Patton WA, Moss J, Vaughan M and Lefkowitz RJ:
beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled
receptor kinase-associated ADP ribosylation factor
GTPase-activating protein. Proc Natl Acad Sci USA. 95:14082–14087.
1998. View Article : Google Scholar : PubMed/NCBI
|
8
|
Claing A, Chen W, Miller WE, Vitale N,
Moss J, Premont RT and Lefkowitz RJ: beta-Arrestin-mediated
ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor
endocytosis. J Biol Chem. 276:42509–42513. 2001. View Article : Google Scholar : PubMed/NCBI
|
9
|
Hsu RM, Tsai MH, Hsieh YJ, Lyu PC and Yu
JS: Identification of MYO18A as a novel interacting partner of the
PAK2/betaPIX/GIT1 complex and its potential function in modulating
epithelial cell migration. Mol Biol Cell. 21:287–301. 2010.
View Article : Google Scholar :
|
10
|
Gavina M, Za L, Molteni R, Pardi R and de
Curtis I: The GIT-PIX complexes regulate the chemotactic response
of rat basophilic leukaemia cells. Biol Cell. 102:231–244. 2010.
View Article : Google Scholar
|
11
|
Menon P, Yin G, Smolock EM, Zuscik MJ, Yan
C and Berk BC: GPCR kinase 2 interacting protein 1 (GIT1) regulates
osteoclast function and bone mass. J Cell Physiol. 225:777–785.
2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ren Y, Yu L, Fan J, Rui Z, Hua Z, Zhang Z,
Zhang N and Yin G: Phosphorylation of GIT1 tyrosine 321 is required
for association with FAK at focal adhesions and for PDGF-activated
migration of osteoblasts. Mol Cell Biochem. 365:109–118. 2012.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Liu J, Zeng L, Kennedy RM, Gruenig NM and
Childs SJ: βPix plays a dual role in cerebral vascular stability
and angiogenesis, and interacts with integrin αvβ8. Dev Biol.
363:95–105. 2012. View Article : Google Scholar
|
14
|
Sato H, Suzuki-Inoue K, Inoue O and Ozaki
Y: Regulation of adaptor protein GIT1 in platelets, leading to the
interaction between GIT1 and integrin alpha(IIb)beta3. Biochem
Biophys Res Commun. 368:157–161. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Loeser RF, Sadiev S, Tan L and Goldring
MB: Integrin expression by primary and immortalized human
chondrocytes: evidence of a differential role for alpha1beta1 and
alpha2beta1 integrins in mediating chondrocyte adhesion to types II
and VI collagen. Osteoarthritis Cartilage. 8:96–105. 2000.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Gigout A, Jolicoeur M, Nelea M, Raynal N,
Farndale R and Buschmann MD: Chondrocyte aggregation in suspension
culture is GFOGER-GPP- and beta1 integrin-dependent. J Biol Chem.
283:31522–31530. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ren K, Ma Y, Huang Y, Liang W, Liu F, Wang
Q, Cui W, Liu Z, Yin G and Fan W: Periodic mechanical stress
activates MEK1/2-ERK1/2 mitogenic signals in rat chondrocytes
through Src and PLCγ1. Braz J Med Biol Res. 44:1231–1242. 2011.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Gohlke H, Schmitz B, Sommerfeld A, Reinehr
R and Haussinger D: α5 β1-integrins are sensors for
tauroursodeoxycholic acid in hepatocytes. Hepatology. 57:1117–1129.
2013. View Article : Google Scholar
|
19
|
Kim SH, Turnbull J and Guimond S:
Extracellular matrix and cell signalling: the dynamic cooperation
of integrin, proteoglycan and growth factor receptor. J Endocrinol.
209:139–151. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Schagemann JC1, Kurz H, Casper ME, Stone
JS, Dadsetan M, Yu-Long S, Mrosek EH, Fitzsimmons JS, O’Driscoll SW
and Reinholz GG: The effect of scaffold composition on the early
structural characteristics of chondrocytes and expression of
adhesion molecules. Biomaterials. 31:2798–2805. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang G, Woods A, Sabari S, Pagnotta L,
Stanton LA and Beier F: RhoA/ROCK signaling suppresses hypertrophic
chondrocyte differentiation. J Biol Chem. 279:13205–13214. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Enomoto-Iwamoto M, Iwamoto M, Nakashima K,
Mukudai Y, Boettiger D, Pacifici M, Kurisu K and Suzuki F:
Involvement of alpha5beta1 integrin in matrix interactions and
proliferation of chondrocytes. J Bone Miner Res. 12:1124–1132.
1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cao L, Lee V, Adams ME, Kiani C, Zhang Y,
Hu W and Yang BB: beta-Integrin-collagen interaction reduces
chondrocyte apoptosis. Matrix Biol. 18:343–355. 1999. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee DY, Li YS, Chang SF, Zhou J, Ho HM,
Chiu JJ and Chien S: Oscillatory flow-induced proliferation of
osteoblast-like cells is mediated by alphavbeta3 and beta1
integrins through synergistic interactions of focal adhesion kinase
and Shc with phosphati-dylinositol 3-kinase and the Akt/mTOR/p70S6K
pathway. J Biol Chem. 285:30–42. 2010. View Article : Google Scholar :
|
25
|
Poole AR, Nelson F, Dahlberg L, et al:
Proteolysis of the collagen fibril in osteoarthritis. Biochem Soc
Symp. 70:115–123. 2003.PubMed/NCBI
|
26
|
Henrotin Y, Addison S, Kraus V and Deberg
M: Type II collagen markers in osteoarthritis: what do they
indicate? Curr Opin Rheumatol. 19:444–450. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bouchet BY, Colon M, Polotsky A, Shikani
AH, Hungerford DS and Frondoza CG: Beta-1 integrin expression by
human nasal chondrocytes in microcarrier spinner culture. J Biomed
Mater Res. 52:716–724. 2000. View Article : Google Scholar : PubMed/NCBI
|
28
|
Rui Z, Li X, Fan J, Ren Y, Yuan Y, Hua Z,
Zhang N and Yin G: GIT1Y321 phosphorylation is required for ERK1/2-
and PDGF-dependent VEGF secretion from osteoblasts to promote
angiogenesis and bone healing. Int J Mol Med. 30:819–825.
2012.PubMed/NCBI
|
29
|
Pang J, Xu X, Wang X, Majumder S, Wang J,
Korshunov VA and Berk BC: G-protein-coupled receptor kinase
interacting protein-1 mediates intima formation by regulating
vascular smooth muscle proliferation, apoptosis, and migration.
Arterioscler Thromb Vasc Biol. 33:999–1005. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Pang J, Xu X, Getman MR, Shi X, Belmonte
SL, Michaloski H, Mohan A, Blaxall BC and Berk BC: G protein
coupled receptor kinase 2 interacting protein 1 (GIT1) is a novel
regulator of mitochondrial biogenesis in heart. J Mol Cell Cardiol.
51:769–776. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang S, Hisatsune C, Matsu-Ura T and
Mikoshiba K: G-protein-coupled receptor kinase-interacting proteins
inhibit apoptosis by inositol 1,4,5-triphosphate receptor-mediated
Ca2+ signal regulation. J Biol Chem. 284:29158–29169.
2009. View Article : Google Scholar : PubMed/NCBI
|