1
|
Simister NE: Placental transport of
immunoglobulin. G Vaccine. 21:3365–3369. 2003. View Article : Google Scholar
|
2
|
Fuchs R and Ellinger I: Endocytic and
transcytotic processes in villous syncytiotrophoblast: Role in
nutrient transport to the human fetus. Traffic. 5:725–738. 2004.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Leach L, Bhasin Y, Clark P and Firth JA:
Isolation of endothelial cells from human term placental villi
using immunomagnetic beads. Placenta. 15:355–364. 1994. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ghetie V and Ward ES: Multiple roles for
the major histocompatibility complex class I-related receptor FcRn.
Annu Rev Immunol. 18:739–766. 2000. View Article : Google Scholar
|
5
|
Brooks DG, Qiu WQ, Luster AD and Ravetch
JV: Structure and expression of human IgG FcRII(CD32). Functional
heterogeneity is encoded by the alternatively spliced products of
multiple genes. J Exp Med. 170:1369–1385. 1989. View Article : Google Scholar : PubMed/NCBI
|
6
|
Callanan MB, Le Baccon P, Mossuz P, Duley
S, Bastard C, Hamoudi R, Dyer MJ, Klobeck G, Rimokh R, Sotto JJ, et
al: The IgG Fc receptor, FcgammaRIIB, is a target for deregulation
by chromosomal translocation in malignant lymphoma. Proc Natl Acad
Sci USA. 97:309–314. 2000. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tridandapani S, Siefker K, Teillaud JL,
Carter JE, Wewers MD and Anderson CL: Regulated expression and
inhibitory function of Fcgamma RIIb in human monocytic cells. J
Biol Chem. 277:5082–5089. 2002. View Article : Google Scholar
|
8
|
Sedmak DD, Davis DH, Singh U, van de
Winkel JG and Anderson CL: Expression of IgG Fc receptor antigens
in placenta and on endothelial cells in humans. An
immunohistochemical study. Am J Pathol. 138:175–181.
1991.PubMed/NCBI
|
9
|
Pulford K, Ralfkiaer E, MacDonald SM,
Erber WN, Falini B, Gatter KC and Mason DY: A new monoclonal
antibody (KB61) recognizing a novel antigen which is selectively
expressed on a subpopulation of human B lymphocytes. Immunology.
57:71–76. 1986.PubMed/NCBI
|
10
|
Lyden TW, Robinson JM, Tridandapani S,
Teillaud JL, Garber SA, Osborne JM, Frey J, Budde P and Anderson
CL: The Fc receptor for IgG expressed in the villus endothelium of
human placenta is Fc gamma RIIb2. J Immunol. 166:3882–3889. 2001.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Takizawa T, Anderson CL and Robinson JM: A
novel Fc gamma R-defined, IgG-containing organelle in placental
endothelium. J Immunol. 175:2331–2339. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Mishima T, Kurasawa G, Ishikawa G, Mori M,
Kawahigashi Y, Ishikawa T, Luo SS, Takizawa T, Goto T, Matsubara S,
et al: Endothelial expression of Fc gamma receptor IIb in the
full-term human placenta. Placenta. 28:170–174. 2007. View Article : Google Scholar
|
13
|
Sohn HW, Krueger PD, Davis RS and Pierce
SK: FcRL4 acts as an adaptive to innate molecular switch dampening
BCR signaling and enhancing TLR signaling. Blood. 118:6332–6341.
2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Medgyesi D, Uray K, Sallai K, Hudecz F,
Koncz G, Abramson J, Pecht I, Sármay G and Gergely J: Functional
mapping of the Fc gamma RII binding site on human IgG1 by synthetic
peptides. Eur J Immunol. 34:1127–1135. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Jung ST, Reddy ST, Kang TH, Borrok MJ,
Sandlie I, Tucker PW and Georgiou G: Aglycosylated IgG variants
expressed in bacteria that selectively bind FcgammaRI potentiate
tumor cell killing by monocyte-dendritic cells. Proc Natl Acad Sci
USA. 107:604–609. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Claypool SM, Dickinson BL, Wagner JS,
Johansen FE, Venu N, Borawski JA, Lencer WI and Blumberg RS:
Bidirectional transepithelial IgG transport by a strongly polarized
basolateral membrane Fcgamma-receptor. Mol Biol Cell. 15:1746–1759.
2004. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tzaban S, Massol RH, Yen E, Hamman W,
Frank SR, Lapierre LA, Hansen SH, Goldenring JR, Blumberg RS and
Lencer WI: The recycling and transcytotic pathways for IgG
transport by FcRn are distinct and display an inherent polarity. J
Cell Biol. 185:673–684. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dickinson BL, Badizadegan K, Wu Z, Ahouse
JC, Zhu X, Simister NE, Blumberg RS and Lencer WI: Bidirectional
FcRn-dependent IgG transport in a polarized human intestinal
epithelial cell line. J Clin Invest. 104:903–911. 1999. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dickinson BL, Claypool SM, D’Angelo JA,
Aiken ML, Venu N, Yen EH, Wagner JS, Borawski JA, Pierce AT,
Hershberg R, et al: Ca2+-dependent calmodulin binding to
FcRn affects immuno-globulin G transport in the transcytotic
pathway. Mol Biol Cell. 19:414–423. 2008. View Article : Google Scholar :
|
20
|
Ui-Tei K, Naito Y, Takahashi F, Haraguchi
T, Ohki-Hamazaki H, Juni A, Ueda R and Saigo K: Guidelines for the
selection of highly effective siRNA sequences for mammalian and
chick RNA interference. Nucleic Acids Res. 32:936–948. 2004.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Luo SS, Ishibashi O, Ishikawa G, Ishikawa
T, Katayama A, Mishima T, Takizawa T, Shigihara T, Goto T, Izumi A,
et al: Human villous trophoblasts express and secrete
placenta-specific microRNAs into maternal circulation via exosomes.
Biol Reprod. 81:717–729. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Akagi I, Okayama H, Schetter AJ, Robles
AI, Kohno T, Bowman ED, Kazandjian D, Welsh JA, Oue N, Saito M, et
al: Combination of protein coding and noncoding gene expression as
a robust prognostic classifier in stage I lung adenocarcinoma.
Cancer Res. 73:3821–3832. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Schermelleh L, Heintzmann R and Leonhardt
H: A guide to super-resolution fluorescence microscopy. J Cell
Biol. 190:165–175. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Takai T: Fc receptors and their role in
immune regulation and autoimmunity. J Clin Immunol. 25:1–18. 2005.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Schmidt RE and Gessner JE: Fc receptors
and their interaction with complement in autoimmunity. Immunol
Lett. 100:56–67. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Maxwell KF, Powell MS, Hulett MD, Barton
PA, McKenzie IF, Garrett TP and Hogarth PM: Crystal structure of
the human leukocyte Fc receptor, Fc gammaRIIa. Nat Struct Biol.
6:437–442. 1999. View
Article : Google Scholar : PubMed/NCBI
|
27
|
Sondermann P, Huber R and Jacob U: Crystal
structure of the soluble form of the human fcgamma-receptor IIb: A
new member of the immunoglobulin superfamily at 1.7 A resolution.
EMBO J. 18:1095–1103. 1999. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hunziker W and Mellman I: Expression of
macrophage-lymphocyte Fc receptors in Madin-Darby canine kidney
cells: Polarity and transcytosis differ for isoforms with or
without coated pit localization domains. J Cell Biol.
109:3291–3302. 1989. View Article : Google Scholar : PubMed/NCBI
|
29
|
Miettinen HM, Matter K, Hunziker W, Rose
JK and Mellman I: Fc receptor endocytosis is controlled by a
cytoplasmic domain determinant that actively prevents coated pit
localization. J Cell Biol. 116:875–888. 1992. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mousavi SA, Sporstøl M, Fladeby C, Kjeken
R, Barois N and Berg T: Receptor-mediated endocytosis of immune
complexes in rat liver sinusoidal endothelial cells is mediated by
FcgammaRIIb2. Hepatology. 46:871–884. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chaudhury C, Mehnaz S, Robinson JM, Hayton
WL, Pearl DK, Roopenian DC and Anderson CL: The major
histocompatibility complex-related Fc receptor for IgG (FcRn) binds
albumin and prolongs its lifespan. J Exp Med. 197:315–322. 2003.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Dancis J, Lind J, Oratz M, Smolens J and
Vara P: Placental transfer of proteins in human gestation. Am J
Obstet Gynecol. 82:167–171. 1961.PubMed/NCBI
|
33
|
Gitlin D, Kumate J, Urrusti J and Morales
C: Τhe selectivity of the human placenta in the transfer of plasma
proteins from mother to fetus. J Clin Invest. 43:1938–1951. 1964.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Junghans RP and Anderson CL: The
protection receptor for IgG catabolism is the
beta2-microglobulin-containing neonatal intestinal transport
receptor. Proc Natl Acad Sci USA. 93. pp. 5512–5516. 1996,
View Article : Google Scholar
|
35
|
Roopenian DC, Christianson GJ, Sproule TJ,
Brown AC, Akilesh S, Jung N, Petkova S, Avanessian L, Choi EY,
Shaffer DJ, et al: The MHC class I-like IgG receptor controls
perinatal IgG transport, IgG homeostasis, and fate of
IgG-Fc-coupled drugs. J Immunol. 170:3528–3533. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kim J, Mohanty S, Ganesan LP, Hua K,
Jarjoura D, Hayton WL, Robinson JM and Anderson CL: FcRn in the
yolk sac endoderm of mouse is required for IgG transport to fetus.
J Immunol. 182:2583–2589. 2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mohanty S, Kim J, Ganesan LP, Phillips GS,
Hua K, Jarjoura D, Hayton WL, Robinson JM and Anderson CL: IgG is
transported across the mouse yolk sac independently of FcgammaRIIb.
J Reprod Immunol. 84:133–144. 2010. View Article : Google Scholar
|
38
|
Mohanty S, Anderson CL and Robinson JM:
The expression of caveolin-1 and the distribution of caveolae in
the murine placenta and yolk sac: Parallels to the human placenta.
Placenta. 31:144–150. 2010. View Article : Google Scholar
|
39
|
Van den Herik-Oudijk IE, Capel PJ, van der
Bruggen T and Van de Winkel JG: Identification of signaling motifs
within human Fc gamma RIIa and Fc gamma RIIb isoforms. Blood.
85:2202–2211. 1995.PubMed/NCBI
|
40
|
Takamori S, Holt M, Stenius K, Lemke EA,
Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, et
al: Molecular anatomy of a trafficking organelle. Cell.
127:831–846. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Brunner Y, Couté Y, Iezzi M, Foti M,
Fukuda M, Hochstrasser DF, Wollheim CB and Sanchez JC: Proteomics
analysis of insulin secretory granules. Mol Cell Proteomics.
6:1007–1017. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Mukhopadhyay A, Nieves E, Che FY, Wang J,
Jin L, Murray JW, Gordon K, Angeletti RH and Wolkoff AW: Proteomic
analysis of endocytic vesicles: Rab1a regulates motility of early
endocytic vesicles. J Cell Sci. 124:765–775. 2011. View Article : Google Scholar : PubMed/NCBI
|
43
|
McPherson PS: Proteomic analysis of
clathrin-coated vesicles. Proteomics. 10:4025–4039. 2010.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Howes MT, Kirkham M, Riches J, Cortese K,
Walser PJ, Simpson F, Hill MM, Jones A, Lundmark R, Lindsay MR, et
al: Clathrin-independent carriers form a high capacity endocytic
sorting system at the leading edge of migrating cells. J Cell Biol.
190:675–691. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Grosshans BL, Ortiz D and Novick P: Rabs
and their effectors: Achieving specificity in membrane traffic.
Proc Natl Acad Sci USA. 103:11821–11827. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Stenmark H: Rab GTPases as coordinators of
vesicle traffic. Nat Rev Mol Cell Biol. 10:513–525. 2009.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Fukuda M: Regulation of secretory vesicle
traffic by Rab small GTPases. Cell Mol Life Sci. 65:2801–2813.
2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Millar AL, Pavios NJ, Xu J and Zheng MH:
Rab3D: A regulator of exocytosis in non-neuronal cells. Histol
Histopathol. 17:929–936. 2002.PubMed/NCBI
|
49
|
Riedel D, Antonin W, Fernandez-Chacon R,
Alvarez de Toledo G, Jo T, Geppert M, Valentijn JA, Valentijn K,
Jamieson JD, Südhof TC, et al: Rab3D is not required for exocrine
exocytosis but for maintenance of normally sized secretory
granules. Mol Cell Biol. 22:6487–6497. 2002. View Article : Google Scholar : PubMed/NCBI
|
50
|
Evans E, Zhang W, Jerdeva G, Chen CY, Chen
X, Hamm-Alvarez SF and Okamoto CT: Direct interaction between Rab3D
and the polymeric immunoglobulin receptor and trafficking through
regulated secretory vesicles in lacrimal gland acinar cells. Am J
Physiol Cell Physiol. 294:C662–C674. 2008. View Article : Google Scholar : PubMed/NCBI
|
51
|
Tian X, Jin RU, Bredemeyer AJ, Oates EJ,
Błazewska KM, McKenna CE and Mills JC: RAB26 and RAB3D are direct
transcriptional targets of MIST1 that regulate exocrine granule
maturation. Mol Cell Biol. 30:1269–1284. 2010. View Article : Google Scholar :
|
52
|
Larkin JM, Woo B, Balan V, Marks DL,
Oswald BJ, LaRusso NF and McNiven MA: Rab3D, a small GTP-binding
protein implicated in regulated secretion, is associated with the
trans-cytotic pathway in rat hepatocytes. Hepatology. 32:348–356.
2000. View Article : Google Scholar : PubMed/NCBI
|
53
|
Knop M, Aareskjold E, Bode G and Gerke V:
Rab3D and annexin A2 play a role in regulated secretion of vWF, but
not tPA, from endothelial cells. EMBO J. 23:2982–2992. 2004.
View Article : Google Scholar : PubMed/NCBI
|