1
|
Briggs MD, Hoffman SM, King LM, Olsen AS,
Mohrenweiser H, Leroy JG, Mortier GR, Rimoin DL, Lachman RS, Gaines
ES, et al: Pseudoachondroplasia and multiple epiphyseal dysplasia
due to mutations in the cartilage oligomeric matrix protein gene.
Nat Genet. 10:330–336. 1995. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jackson GC, Mittaz-Crettol L, Taylor JA,
Mortier GR, Spranger J, Zabel B, Le Merrer M, Cormier-Daire V, Hall
CM, Offiah A, et al: Pseudoachondroplasia and multiple epiphyseal
dysplasia: A 7-year comprehensive analysis of the known disease
genes identify novel and recurrent mutations and provides an
accurate assessment of their relative contribution. Hum Mutat.
33:144–157. 2012. View Article : Google Scholar :
|
3
|
Posey KL, Yang Y, Veerisetty AC, Sharan SK
and Hecht JT: Model systems for studying skeletal dysplasias caused
by TSP-5/COMP mutations. Cell Mol Life Sci. 65:687–699. 2008.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Briggs MD, Brock J, Ramsden SC and Bell
PA: Genotype to phenotype correlations in cartilage oligomeric
matrix protein associated chondrodysplasias. Eur J Hum Genet.
22:1278–1282. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Spitznagel L, Nitsche DP, Paulsson M,
Maurer P and Zaucke F: Characterization of a
pseudoachondroplasia-associated mutation (His587–>Arg) in the
C-terminal, collagen-binding domain of cartilage oligomeric matrix
protein (COMP). Biochem J. 377:479–487. 2004. View Article : Google Scholar
|
6
|
Schmitz M, Becker A, Schmitz A, Weirich C,
Paulsson M, Zaucke F and Dinser R: Disruption of extracellular
matrix structure may cause pseudoachondroplasia phenotypes in the
absence of impaired cartilage oligomeric matrix protein secretion.
J Biol Chem. 281:32587–32595. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Piróg-Garcia KA, Meadows RS, Knowles L,
Heinegård D, Thornton DJ, Kadler KE, Boot-Handford RP and Briggs
MD: Reduced cell proliferation and increased apoptosis are
significant pathological mechanisms in a murine model of mild
pseudoachondroplasia resulting from a mutation in the C-terminal
domain of COMP. Hum Mol Genet. 16:2072–2088. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Briggs MD, Mortier GR, Cole WG, King LM,
Golik SS, Bonaventure J, Nuytinck L, De Paepe A, Leroy JG,
Biesecker L, et al: Diverse mutations in the gene for cartilage
oligomeric matrix protein in the pseudoachondroplasia-multiple
epiphyseal dysplasia disease spectrum. Am J Hum Genet. 62:311–319.
1998. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Bell PA, Wagener R, Zaucke F, Koch M,
Selley J, Warwood S, Knight D, Boot-Handford RP, Thornton DJ and
Briggs MD: Analysis of the cartilage proteome from three different
mouse models of genetic skeletal diseases reveals common and
discrete disease signatures. Biol Open. 2:802–811. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hecht JT, Hayes E, Snuggs M, Decker G,
Montufar-Solis D, Doege K, Mwalle F, Poole R, Stevens J and Duke
PJ: Calreticulin, PDI, Grp94 and BiP chaperone proteins are
associated with retained COMP in pseudoachondroplasia chondrocytes.
Matrix Biol. 20:251–262. 2001. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hecht JT, Hayes E, Haynes R and Cole WG:
COMP mutations, chondrocyte function and cartilage matrix. Matrix
Biol. 23:525–533. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hecht JT, Makitie O, Hayes E, Haynes R,
Susic M, Montufar-Solis D, Duke PJ and Cole WG: Chondrocyte cell
death and intracellular distribution of COMP and type IX collagen
in the pseudoachondroplasia growth plate. J Orthop Res. 22:759–767.
2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Duke J, Montufar-Solis D, Underwood S,
Lalani Z and Hecht JT: Apoptosis staining in cultured
pseudoachondroplasia chondrocytes. Apoptosis. 8:191–197. 2003.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Hashimoto Y, Tomiyama T, Yamano Y and Mori
H: Mutation (D472Y) in the type 3 repeat domain of cartilage
oligomeric matrix protein affects its early vesicle trafficking in
endoplasmic reticulum and induces apoptosis. Am J Pathol.
163:101–110. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Suleman F, Gualeni B, Gregson HJ, Leighton
MP, Piróg KA, Edwards S, Holden P, Boot-Handford RP and Briggs MD:
A novel form of chondrocyte stress is triggered by a COMP mutation
causing pseudoachondroplasia. Hum Mutat. 33:218–231. 2012.
View Article : Google Scholar :
|
16
|
Cotterill SL, Jackson GC, Leighton MP,
Wagener R, Mäkitie O, Cole WG and Briggs MD: Multiple epiphyseal
dysplasia mutations in MATN3 cause misfolding of the A-domain and
prevent secretion of mutant matrilin-3. Hum Mutat. 26:557–565.
2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fresquet M, Jowitt TA, Ylöstalo J, Coffey
P, Meadows RS, Ala-Kokko L, Thornton DJ and Briggs MD: Structural
and functional characterization of recombinant matrilin-3 A-domain
and implications for human genetic bone diseases. J Biol Chem.
282:34634–34643. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chapman KL, Mortier GR, Chapman K,
Loughlin J, Grant ME and Briggs MD: Mutations in the region
encoding the von Willebrand factor A domain of matrilin-3 are
associated with multiple epiphyseal dysplasia. Nat Genet.
28:393–396. 2001. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Leighton MP, Nundlall S, Starborg T,
Meadows RS, Suleman F, Knowles L, Wagener R, Thornton DJ, Kadler
KE, Boot-Handford RP, et al: Decreased chondrocyte proliferation
and dysregulated apoptosis in the cartilage growth plate are key
features of a murine model of epiphyseal dysplasia caused by a
matn3 mutation. Hum Mol Genet. 16:1728–1741. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Schmitz M, Niehoff A, Miosge N, Smyth N,
Paulsson M and Zaucke F: Transgenic mice expressing D469Delta
mutated cartilage oligomeric matrix protein (COMP) show growth
plate abnormalities and sternal malformations. Matrix Biol.
27:67–85. 2008. View Article : Google Scholar
|
21
|
Posey KL, Veerisetty AC, Liu P, Wang HR,
Poindexter BJ, Bick R, Alcorn JL and Hecht JT: An inducible
cartilage oligomeric matrix protein mouse model recapitulates human
pseudoachondroplasia phenotype. Am J Pathol. 175:1555–1563. 2009.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Posey KL, Coustry F, Veerisetty AC, Liu P,
Alcorn JL and Hecht JT: Chop (Ddit3) is essential for D469del-COMP
retention and cell death in chondrocytes in an inducible transgenic
mouse model of pseudoachondroplasia. Am J Pathol. 180:727–737.
2012. View Article : Google Scholar :
|
23
|
Nundlall S, Rajpar MH, Bell PA, Clowes C,
Zeeff LA, Gardner B, Thornton DJ, Boot-Handford RP and Briggs MD:
An unfolded protein response is the initial cellular response to
the expression of mutant matrilin-3 in a mouse model of multiple
epiphyseal dysplasia. Cell Stress Chaperones. 15:835–849. 2010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Pahl HL and Baeuerle PA: The ER-overload
response: Activation of NF-kappa B. Trends Biochem Sci. 22:63–67.
1997. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ekeowa UI, Freeke J, Miranda E, Gooptu B,
Bush MF, Pérez J, Teckman J, Robinson CV and Lomas DA: Defining the
mechanism of polymerization in the serpinopathies. Proc Natl Acad
Sci USA. 107:17146–17151. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chessler SD and Byers PH: BiP binds type I
procollagen pro alpha chains with mutations in the
carboxyl-terminal propeptide synthesized by cells from patients
with osteogenesis imperfecta. J Biol Chem. 268:18226–18233.
1993.PubMed/NCBI
|
27
|
Ishida Y, Yamamoto A, Kitamura A, Lamandé
SR, Yoshimori T, Bateman JF, Kubota H and Nagata K: Autophagic
elimination of misfolded procollagen aggregates in the endoplasmic
reticulum as a means of cell protection. Mol Biol Cell.
20:2744–2754. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hartley CL, Edwards S, Mullan L, Bell PA,
Fresquet M, Boot-Handford RP and Briggs MD: Armet/Manf and Creld2
are components of a specialized ER stress response provoked by
inappropriate formation of disulphide bonds: Implications for
genetic skeletal diseases. Hum Mol Genet. 22:5262–5275. 2013.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kaufman RJ: Orchestrating the unfolded
protein response in health and disease. J Clin Invest.
110:1389–1398. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Rajpar MH, McDermott B, Kung L, Eardley R,
Knowles L, Heeran M, Thornton DJ, Wilson R, Bateman JF, Poulsom R,
et al: Targeted induction of endoplasmic reticulum stress induces
cartilage pathology. PLoS Genet. 5:e10006912009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gualeni B, Rajpar MH, Kellogg A, Bell PA,
Arvan P, Boot-Handford RP and Briggs MD: A novel transgenic mouse
model of growth plate dysplasia reveals that decreased chondrocyte
proliferation due to chronic ER stress is a key factor in reduced
bone growth. Dis Model Mech. 6:1414–1425. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
De Leonardis F, Monti L, Gualeni B, Tenni
R, Forlino A and Rossi A: Altered signaling in the G1 phase
deregulates chondrocyte growth in a mouse model with proteoglycan
undersulfation. J Cell Biochem. 115:1779–1786. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yamashita A, Morioka M, Kishi H, Kimura T,
Yahara Y, Okada M, Fujita K, Sawai H, Ikegawa S and Tsumaki N:
Statin treatment rescues FGFR3 skeletal dysplasia phenotypes.
Nature. 513:507–511. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liang G, Lian C and Huang D, Gao W, Liang
A, Peng Y, Ye W, Wu Z, Su P and Huang D: Endoplasmic reticulum
stress-unfolding protein response-apoptosis cascade causes
chondrodysplasia in a col2a1 p.Gly1170Ser mutated mouse model. PLoS
One. 9:e868942014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Arita M, Fertala J, Hou C, Steplewski A
and Fertala A: Mechanisms of aberrant organization of growth plates
in conditional transgenic mouse model of spondyloepiphyseal
dysplasia associated with the R992C substitution in collagen II. Am
J Pathol. 185:214–229. 2015. View Article : Google Scholar
|
36
|
Jackson GC, Barker FS, Jakkula E,
Czarny-Ratajczak M, Mäkitie O, Cole WG, Wright MJ, Smithson SF,
Suri M, Rogala P, et al: Missense mutations in the beta strands of
the single A-domain of matrilin-3 result in multiple epiphyseal
dysplasia. J Med Genet. 41:52–59. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dixon J and Dixon MJ: Genetic background
has a major effect on the penetrance and severity of craniofacial
defects in mice heterozygous for the gene encoding the nucleolar
protein Treacle. Dev Dyn. 229:907–914. 2004. View Article : Google Scholar : PubMed/NCBI
|
38
|
Piróg KA, Irman A, Young S, Halai P, Bell
PA, Boot-Handford RP and Briggs MD: Abnormal chondrocyte apoptosis
in the cartilage growth plate is influenced by genetic background
and deletion of CHOP in a targeted mouse model of
pseudoachondroplasia. PLoS One. 9:e851452014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Piróg KA and Briggs MD: Skeletal
dysplasias associated with mild myopathy-a clinical and molecular
review. J Biomed Biotechnol. 2010:6864572010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Jackson GC, Marcus-Soekarman D,
Stolte-Dijkstra I, Verrips A, Taylor JA and Briggs MD: Type IX
collagen gene mutations can result in multiple epiphyseal dysplasia
that is associated with osteochondritis dissecans and a mild
myopathy. Am J Med Genet A. 152A:863–869. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Piróg KA, Jaka O, Katakura Y, Meadows RS,
Kadler KE, Boot-Handford RP and Briggs MD: A mouse model offers
novel insights into the myopathy and tendinopathy often associated
with pseudoachondroplasia and multiple epiphyseal dysplasia. Hum
Mol Genet. 19:52–64. 2010. View Article : Google Scholar
|
42
|
Piróg KA, Katakura Y, Mironov A and Briggs
MD: Mild myopathy is associated with COMP but not MATN3 mutations
in mouse models of genetic skeletal diseases. PLoS One.
8:e824122013. View Article : Google Scholar : PubMed/NCBI
|
43
|
Posey KL, Alcorn JL and Hecht JT:
Pseudoachondroplasia/COMP - translating from the bench to the
bedside. Matrix Biol. 37:167–173. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Posey KL, Coustry F, Veerisetty AC, Liu P,
Alcorn JL and Hecht JT: Chondrocyte-specific pathology during
skeletal growth and therapeutics in a murine model of
pseudoachondroplasia. J Bone Miner Res. 29:1258–1268. 2014.
View Article : Google Scholar :
|
45
|
Hecht JT, Nelson LD, Crowder E, Wang Y,
Elder FF, Harrison WR, Francomano CA, Prange CK, Lennon GG, Deere
M, et al: Mutations in exon 17B of cartilage oligomeric matrix
protein (COMP) cause pseudoachondroplasia. Nat Genet. 10:325–329.
1995. View Article : Google Scholar : PubMed/NCBI
|
46
|
Paassilta P, Lohiniva J, Annunen S,
Bonaventure J, Le Merrer M, Pai L and Ala-Kokko L: COL9A3: A third
locus for multiple epiphyseal dysplasia. Am J Hum Genet.
64:1036–1044. 1999. View
Article : Google Scholar : PubMed/NCBI
|
47
|
Muragaki Y, Mariman EC, van Beersum SE,
Perälä M, van Mourik JB, Warman ML, Olsen BR and Hamel BC: A
mutation in the gene encoding the alpha 2 chain of the
fibril-associated collagen IX, COL9A2, causes multiple epiphyseal
dysplasia (EDM2). Nat Genet. 12:103–105. 1996. View Article : Google Scholar : PubMed/NCBI
|
48
|
Czarny-Ratajczak M, Lohiniva J, Rogala P,
Kozlowski K, Perälä M, Carter L, Spector TD, Kolodziej L, Seppänen
U, Glazar R, et al: A mutation in COL9A1 causes multiple epiphyseal
dysplasia: Further evidence for locus heterogeneity. Am J Hum
Genet. 69:969–980. 2001. View
Article : Google Scholar : PubMed/NCBI
|
49
|
Terhal PA, Nievelstein RJ, Verver EJ,
Topsakal V, van Dommelen P, Hoornaert K, Le Merrer M, Zankl A,
Simon ME, Smithson SF, et al: A study of the clinical and
radiological features in a cohort of 93 patients with a COL2A1
mutation causing spondyloepiphyseal dysplasia congenita or a
related phenotype. Am J Med Genet A. 167:461–475. 2015. View Article : Google Scholar
|
50
|
Majava M, Hoornaert KP, Bartholdi D, Bouma
MC, Bouman K, Carrera M, Devriendt K, Hurst J, Kitsos G, Niedrist
D, et al: A report on 10 new patients with heterozygous mutations
in the COL11A1 gene and a review of genotype-phenotype correlations
in type XI collagenopathies. Am J Med Genet A. 143A:258–264. 2007.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Ho MS, Tsang KY, Lo RL, Susic M, Mäkitie
O, Chan TW, Ng VC, Sillence DO, Boot-Handford RP, Gibson G, et al:
COL10A1 nonsense and frame-shift mutations have a gain-of-function
effect on the growth plate in human and mouse metaphyseal
chondrodysplasia type Schmid. Hum Mol Genet. 16:1201–1215. 2007.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Tompson SW, Merriman B, Funari VA,
Fresquet M, Lachman RS, Rimoin DL, Nelson SF, Briggs MD, Cohn DH
and Krakow D: A recessive skeletal dysplasia, SEMD aggrecan type,
results from a missense mutation affecting the C-type lectin domain
of aggrecan. Am J Hum Genet. 84:72–79. 2009. View Article : Google Scholar :
|
53
|
Stattin EL, Wiklund F, Lindblom K,
Onnerfjord P, Jonsson BA, Tegner Y, Sasaki T, Struglics A,
Lohmander S, Dahl N, et al: A missense mutation in the aggrecan
C-type lectin domain disrupts extracellular matrix interactions and
causes dominant familial osteochondritis dissecans. Am J Hum Genet.
86:126–137. 2010. View Article : Google Scholar : PubMed/NCBI
|
54
|
Nilsson O, Guo MH, Dunbar N, Popovic J,
Flynn D, Jacobsen C, Lui JC, Hirschhorn JN, Baron J and Dauber A:
Short stature, accelerated bone maturation, and early growth
cessation due to heterozygous aggrecan mutations. J Clin Endocrinol
Metab. 99:E1510–E1518. 2014. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kung LH, Rajpar MH, Preziosi R, Briggs MD
and Boot-Handford RP: Increased classical endoplasmic reticulum
stress is sufficient to reduce chondrocyte proliferation rate in
the growth plate and decrease bone growth. PLoS One.
10:e01170162015. View Article : Google Scholar : PubMed/NCBI
|