1
|
Corbeil D, Karbanová J, Fargeas CA and
Jászai J: Prominin-1 (CD133): Molecular and cellular features
across species. Adv Exp Med Biol. 777:3–24. 2013. View Article : Google Scholar
|
2
|
Grosse-Gehling P, Fargeas CA, Dittfeld C,
Garbe Y, Alison MR, Corbeil D and Kunz-Schughart LA: CD133 as a
biomarker for putative cancer stem cells in solid tumours:
Limitations, problems and challenges. J Pathol. 229:355–378. 2013.
View Article : Google Scholar
|
3
|
Friedman GK and Gillespie GY: Cancer stem
cells and pediatric solid tumors. Cancers (Basel). 3:298–318. 2011.
View Article : Google Scholar
|
4
|
Xia P: Surface markers of cancer stem
cells in solid tumors. Curr Stem Cell Res Ther. 9:102–111. 2014.
View Article : Google Scholar
|
5
|
Veselska R, Hermanova M, Loja T, Chlapek
P, Zambo I, Vesely K, Zitterbart K and Sterba J: Nestin expression
in osteosarcomas and derivation of nestin/CD133 positive
osteosarcoma cell lines. BMC Cancer. 8:3002008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sana J, Zambo I, Skoda J, Neradil J,
Chlapek P, Hermanova M, Mudry P, Vasikova A, Zitterbart K, Hampl A,
et al: CD133 expression and identification of CD133/nestin positive
cells in rhabdomyosarcomas and rhabdomyosarcoma cell lines. Anal
Cell Pathol (Amst). 34:303–318. 2011. View Article : Google Scholar
|
7
|
Di Fiore R, Santulli A, Ferrante RD,
Giuliano M, De Blasio A, Messina C, Pirozzi G, Tirino V, Tesoriere
G and Vento R: Identification and expansion of human
osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide
treatment. J Cell Physiol. 219:301–313. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Tirino V, Desiderio V, Paino F, De Rosa A,
Papaccio F, Fazioli F, Pirozzi G and Papaccio G: Human primary bone
sarcomas contain CD133+ cancer stem cells displaying
high tumorigenicity in vivo. FASEB J. 25:2022–2030. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Walter D, Satheesha S, Albrecht P,
Bornhauser BC, D’Alessandro V, Oesch SM, Rehrauer H, Leuschner I,
Koscielniak E, Gengler C, et al: CWS Study Group: CD133 positive
embryonal rhabdomyosarcoma stem-like cell population is enriched in
rhabdospheres. PLoS One. 6:e195062011. View Article : Google Scholar
|
10
|
Pressey JG, Haas MC, Pressey CS, Kelly VM,
Parker JN, Gillespie GY and Friedman GK: CD133 marks a myogenically
primitive subpopulation in rhabdomyosarcoma cell lines that are
relatively chemoresistant but sensitive to mutant HSV. Pediatr
Blood Cancer. 60:45–52. 2013. View Article : Google Scholar
|
11
|
Veselska R, Skoda J and Neradil J:
Detection of cancer stem cell markers in sarcomas. Klin Onkol.
25:2S16–2S20. 2012.PubMed/NCBI
|
12
|
Dela Cruz FS: Cancer stem cells in
pediatric sarcomas. Front Oncol. 3:1682013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Satheesha S and Schafer BW: Cancer stem
cells in pediatric sarcomas. Stem Cells and Cancer Stem Cells.
Hayat MA: Springer; Dordrecht: pp. 111–126. 2014, View Article : Google Scholar
|
14
|
Cantile M, Collina F, D’Aiuto M, Rinaldo
M, Pirozzi G, Borsellino C, Franco R, Botti G and Di Bonito M:
Nuclear localization of cancer stem cell marker CD133 in
triple-negative breast cancer: A case report. Tumori. 99:e245–e250.
2013.PubMed/NCBI
|
15
|
Huang M, Zhu H, Feng J, Ni S and Huang J:
High CD133 expression in the nucleus and cytoplasm predicts poor
prognosis in non-small cell lung cancer. Dis Markers.
2015:9860952015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Veselska R, Kuglik P, Cejpek P, Svachova
H, Neradil J, Loja T and Relichova J: Nestin expression in the cell
lines derived from glioblastoma multiforme. BMC Cancer. 6:322006.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Bidlingmaier S, Zhu X and Liu B: The
utility and limitations of glycosylated human CD133 epitopes in
defining cancer stem cells. J Mol Med Berl. 86:1025–1032. 2008.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Loja T, Chlapek P, Kuglik P, Pesakova M,
Oltova A, Cejpek P and Veselska R: Characterization of a GM7
glioblastoma cell line showing CD133 positivity and both
cytoplasmic and nuclear localization of nestin. Oncol Rep.
21:119–127. 2009.
|
19
|
Tirino V, Desiderio V, d’Aquino R, De
Francesco F, Pirozzi G, Graziano A, Galderisi U, Cavaliere C, De
Rosa A, Papaccio G and Giordano A: Detection and characterization
of CD133+ cancer stem cells in human solid tumours. PLoS
One. 3:e34692008. View Article : Google Scholar
|
20
|
Mak AB, Nixon AM, Kittanakom S, Stewart
JM, Chen GI, Curak J, Gingras AC, Mazitschek R, Neel BG, Stagljar I
and Moffat J: Regulation of CD133 by HDAC6 promotes β-catenin
signaling to suppress cancer cell differentiation. Cell Rep.
2:951–963. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang SC and Hung MC: Nuclear translocation
of the epidermal growth factor receptor family membrane tyrosine
kinase receptors. Clin Cancer Res. 15:6484–6489. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mills IG: Nuclear translocation and
functions of growth factor receptors. Semin Cell Dev Biol.
23:165–171. 2012. View Article : Google Scholar
|
23
|
Carpenter G and Liao HJ: Receptor tyrosine
kinases in the nucleus. Cold Spring Harb Perspect Biol.
5:a0089792013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Takenobu H, Shimozato O, Nakamura T,
Ochiai H, Yamaguchi Y, Ohira M, Nakagawara A and Kamijo T: CD133
suppresses neuroblastoma cell differentiation via signal pathway
modification. Oncogene. 30:97–105. 2011. View Article : Google Scholar
|
25
|
Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu
N, Xu W, Cui C, Xing Y, Liu Y, et al: Activation of PI3K/Akt
pathway by CD133-p85 interaction promotes tumorigenic capacity of
glioma stem cells. Proc Natl Acad Sci USA. 110:6829–6834. 2013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Shimozato O, Waraya M, Nakashima K, Souda
H, Takiguchi N, Yamamoto H, Takenobu H, Uehara H, Ikeda E,
Matsushita S, et al: Receptor-type protein tyrosine phosphatase κ
directly dephosphorylates CD133 and regulates downstream AKT
activation. Oncogene. 34:1949–1960. 2014. View Article : Google Scholar
|