1
|
Wernette CM, White BD and Zizza CA:
Signaling proteins that influence energy intake may affect
unintentional weight loss in elderly persons. J Am Diet Assoc.
111:864–873. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Taekema DG, Gussekloo J, Maier AB,
Westendorp RG and de Craen AJ: Handgrip strength as a predictor of
functional, psychological and social health. A prospective
population-based study among the oldest old. Age Ageing.
39:331–337. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Doherty TJ: Invited review: aging and
sarcopenia. J Appl Physiol. 95:1717–1727. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lexell J, Taylor CC and Sjöström M: What
is the cause of the ageing atrophy? Total number, size and
proportion of different fiber types studied in whole vastus
lateralis muscle from 15- to 83-year-old men. J Neurol Sci.
84:275–294. 1988. View Article : Google Scholar : PubMed/NCBI
|
5
|
Nilwik R, Snijders T, Leenders M, Groen
BB, van Kranenburg J, Verdijk LB and van Loon LJ: The decline in
skeletal muscle mass with aging is mainly attributed to a reduction
in type II muscle fiber size. Exp Gerontol. 48:492–498. 2013.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Vinciguerra M, Musaro A and Rosenthal N:
Regulation of muscle atrophy in aging and disease. Adv Exp Med
Biol. 694:211–233. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Shefer G, Rauner G, Yablonka-Reuveni Z and
Benayahu D: Reduced satellite cell numbers and myogenic capacity in
aging can be alleviated by endurance exercise. PLoS One.
5:e133072010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Uto T, Suangkaew N, Morinaga O, Kariyazono
H, Oiso S and Shoyama Y: Eriobotryae folium extract suppresses
LPS-induced iNOS and COX-2 expression by inhibition of NF-kappaB
and MAPK activation in murine macrophages. Am J Chin Med.
38:985–994. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Noreen W, Wadood A, Hidayat HK and Wahid
SA: Effect of Eriobotrya japonica on blood glucose levels of normal
and alloxan-diabetic rabbits. Planta Med. 54:196–199. 1988.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Li WL, Wu JL, Ren BR, Chen J and Lu CG:
Pharmacological studies on anti-hyperglycemic effect of folium
eriobotryae. Am J Chin Med. 35:705–711. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cha DS, Shin TY, Eun JS, Kim DK and Jeon
H: Anti-metastatic properties of the leaves of Eriobotrya japonica.
Arch Pharm Res. 34:425–436. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Alshaker HA, Qinna NA, Qadan F, Bustami M
and Matalka KZ: Eriobotrya japonica hydrophilic extract modulates
cytokines in normal tissues, in the tumor of Meth-A-fibrosarcoma
bearing mice, and enhances their survival time. BMC Complement
Altern Med. 11:92011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang Y, Li J, Cao Q, Yu SC, Lv XW, Jin Y,
Zhang L, Zou YH and Ge JF: Anti-oxidative effect of triterpene
acids of Eriobotrya japonica (Thunb) Lindl. leaf in chronic
bronchitis rats. Life Sci. 78:2749–2757. 2006. View Article : Google Scholar
|
14
|
Ge JF, Wang TY, Zhao B, Lv XW, Jin Y, Peng
L, Yu SC and Li J: Anti-inflammatory effect of triterpenoic Aacids
of Eriobotrya japonica (Thunb.) Lindl. Leaf on rat model of chronic
bronchitis. Am J Chin Med. 37:309–321. 2009. View Article : Google Scholar
|
15
|
Yang Y, Huang Y, Huang C, Lv X, Liu L,
Wang Y and Li J: Antifibrosis effects of triterpene acids of
Eriobotrya japonica (Thunb.) Lindl. leaf in a rat model of
bleomycin-induced pulmonary fibrosis. J Pharm Pharmacol.
64:1751–1760. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Banno N, Akihisa T, Tokuda H, Yasukawa K,
Taguchi Y, Akazawa H, Ukiya M, Kimura Y, Suzuki T and Nishino H:
Anti-inflammatory and antitumor-promoting effects of the triterpene
acids from the leaves of Eriobotrya japonica. Biol Pharm Bull.
28:1995–1999. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tan H, Furuta S, Nagata T, Ohnuki K,
Akasaka T, Shirouchi B, Sato M, Kondo R and Shimizu K: Inhibitory
effects of the leaves of loquat (Eriobotrya japonica) on bone
mineral density loss in ovariectomized mice and osteoclast
differentiation. J Agric Food Chem. 62:836–841. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
De Tommasi N, De Simone F, Pizza C,
Mahmood N, Moore PS, Conti C, Orsi N and Stein ML: Constituents of
Eriobotrya japonica. A study of their antiviral properties. J Nat
Prod. 55:1067–1073. 1992. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kunkel SD, Suneja M, Ebert SM, Bongers KS,
Fox DK, Malmberg SE, Alipour F, Shields RK and Adams CM: mRNA
expression signatures of human skeletal muscle atrophy identify a
natural compound that increases muscle mass. Cell Metab.
13:627–638. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kunkel SD, Elmore CJ, Bongers KS, Ebert
SM, Fox DK, Dyle MC, Bullard SA and Adams CM: Ursolic acid
increases skeletal muscle and brown fat and decreases diet-induced
obesity, glucose intolerance and fatty liver disease. PLoS One.
7:e393322012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim M, Sung B, Kang YJ, Kim DH, Lee Y,
Hwang SY, Yoon JH, Yoo MA, Kim CM, Chung HY and Kim ND: The
combination of ursolic acid and leucine potentiates the
differentiation of C2C12 murine myoblasts through the mTOR
signaling pathway. Int J Mol Med. 35:755–762. 2015.
|
22
|
Jung HA, Park JC, Chung HY, Kim J and Choi
JS: Antioxidant flavonoids and chlorogenic acid from the leaves of
Eriobotrya japonica. Arch Pharm Res. 22:213–218. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Nuss JE, Amaning JK, Bailey CE, DeFord JH,
Dimayuga VL, Rabek JP and Papaconstantinou J: Oxidative
modification and aggregation of creatine kinase from aged mouse
skeletal muscle. Aging (Albany NY). 1:557–572. 2009.
|
24
|
Novitch BG, Mulligan GJ, Jacks T and
Lassar AB: Skeletal muscle cells lacking the retinoblastoma protein
display defects in muscle gene expression and accumulate in S and
G2 phases of the cell cycle. J Cell Biol. 135:441–456. 1996.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Dufresne MJ, MacLeod J, Rogers J and
Sanwal BD: Serine auxotrophy of myoblasts in primary and secondary
culture. Biochem Biophys Res Commun. 70:1085–1090. 1976. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ge Y and Chen J: Mammalian target of
rapamycin (mTOR) signaling network in skeletal myogenesis. J Biol
Chem. 287:43928–43935. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ge Y, Wu AL, Warnes C, Liu J, Zhang C,
Kawasome H, Terada N, Boppart MD, Schoenherr CJ and Chen J: mTOR
regulates skeletal muscle regeneration in vivo through
kinase-dependent and kinase-independent mechanisms. Am J Physiol
Cell Physiol. 297:C1434–C1444. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sarti S, Ruggiero E, Coin A, Toffanello
ED, Perissinotto E, Miotto F, Pintore G, Inelmen EM, Manzato E and
Sergi G: Dietary intake and physical performance in healthy elderly
women: a 3-year follow-up. Exp Gerontol. 48:250–254. 2013.
View Article : Google Scholar
|
29
|
Cha DS, Eun JS and Jeon H:
Anti-inflammatory and anti-nociceptive properties of the leaves of
Eriobotrya japonica. J Ethnopharmacol. 134:305–312. 2011.
View Article : Google Scholar
|
30
|
Candow DG, Forbes SC, Little JP, Cornish
SM, Pinkoski C and Chilibeck PD: Effect of nutritional
interventions and resistance exercise on aging muscle mass and
strength. Biogerontology. 13:345–358. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gutierrez-Salmean G, Ciaraldi TP, Nogueira
L, Barboza J, Taub PR, Hogan MC, Henry RR, Meaney E, Villarreal F,
Ceballos G and Ramirez-Sanchez I: Effects of (-)-epicatechin on
molecular modulators of skeletal muscle growth and differentiation.
J Nutr Biochem. 25:91–94. 2014. View Article : Google Scholar
|
32
|
Alway SE, Bennett BT, Wilson JC, Edens NK
and Pereira SL: Epigallocatechin-3-gallate improves plantaris
muscle recovery after disuse in aged rats. Exp Gerontol. 50:82–94.
2014. View Article : Google Scholar :
|
33
|
Pierno S, Tricarico D, Liantonio A, Mele
A, Digennaro C, Rolland JF, Bianco G, Villanova L, Merendino A,
Camerino GM, et al: An olive oil-derived antioxidant mixture
ameliorates the age-related decline of skeletal muscle function.
Age (Dordr). 36:73–88. 2014. View Article : Google Scholar :
|
34
|
Bentzinger CF, Wang YX and Rudnicki MA:
Building muscle: molecular regulation of myogenesis. Cold Spring
Harb Perspect Biol. 4:a0083422012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Parker MH, Seale P and Rudnicki MA:
Looking back to the embryo: Defining transcriptional networks in
adult myogenesis. Nat Rev Genet. 4:497–507. 2003. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kaminski J, Lançon A, Aires V, Limagne E,
Tili E, Michaille JJ and Latruffe N: Resveratrol initiates
differentiation of mouse skeletal muscle-derived C2C12 myoblasts.
Biochem Pharmacol. 84:1251–1259. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Senesi P, Luzi L, Montesano A, Mazzocchi N
and Terruzzi I: Betaine supplement enhances skeletal muscle
differentiation in murine myoblasts via IGF-1 signaling activation.
J Transl Med. 11:1742013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hwang J, Lee SJ, Yoo M, Go GY, Lee Y, Kim
YK, Seo DW, Kang JS, Ryu JH and Bae GU: Kazinol-P from Broussonetia
kazinoki enhances skeletal muscle differentiation via p38MAPK and
MyoD. Biochem Biophys Res Commun. 456:471–475. 2015. View Article : Google Scholar
|
39
|
Lee SJ, Yoo M, Go GY, Hwang J, Lee HG, Kim
YK, Seo DW, Baek NI, Ryu JH, Kang JS and Bae GU:
Tetrahydropalmatine promotes myoblast differentiation through
activation of p38MAPK and MyoD. Biochem Biophys Res Commun.
455:147–152. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wilson EM and Rotwein P: Selective control
of skeletal muscle differentiation by Akt1. J Biol Chem.
282:5106–5110. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Gingras AC, Raught B and Sonenberg N:
Regulation of translation initiation by FRAP/mTOR. Genes Dev.
15:807–826. 2001. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gingras AC, Raught B and Sonenberg N: eIF4
initiation factors: Effectors of mRNA recruitment to ribosomes and
regulators of translation. Annu Rev Biochem. 68:913–963. 1999.
View Article : Google Scholar
|
43
|
Magnuson B, Ekim B and Fingar DC:
Regulation and function of ribosomal protein S6 kinase (S6K) within
mTOR signalling networks. Biochem J. 441:1–21. 2012. View Article : Google Scholar
|
44
|
Park IH and Chen J: Mammalian target of
rapamycin (mTOR) signaling is required for a late-stage fusion
process during skeletal myotube maturation. J Biol Chem.
280:32009–32017. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Noh KK, Chung KW, Sung B, Kim MJ, Park CH,
Yoon C, Choi JS, Kim MK, Kim CM, Kim ND and Chung HY: Loquat
(Eriobotrya japonica) extract prevents dexamethasone-induced muscle
atrophy by inhibiting the muscle degradation pathway in
Sprague-Dawley rats. Mol Med Rep. 12:3607–3614. 2015.PubMed/NCBI
|
46
|
Said O, Saad B, Fulder S, Amin R, Kassis E
and Khalil K: Hypolipidemic activity of extracts from Eriobotrya
japonica and Olea europaea, traditionally used in the Greco-Arab
medicine in maintaining healthy fat levels in the blood. Open
Complement Med J. 1:84–91. 2009.
|