1
|
Richterová R, Jurečeková J, Evinová A,
Kolarovszki B, Benčo M, De Riggo J, Sutovský J, Mahmood S, Račay P
and Dobrota D: Most frequent molecular and immunohistochemical
markers present in selected types of brain tumors. Gen Physiol
Biophys. 33:259–279. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ricard D, Idbaih A, Ducray F, Lahutte M,
Hoang-Xuan K and Delattre JY: Primary brain tumours in adults.
Lancet. 379:1984–1996. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Louis DN, Ohgaki H, Wiestler OD, Cavenee
WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007
WHO classification of tumours of the central nervous system. Acta
Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
4
|
Persano L, Rampazzo E, Basso G and Viola
G: Glioblastoma cancer stem cells: role of the microenvironment and
therapeutic targeting. Biochem Pharmacol. 85:612–622. 2013.
View Article : Google Scholar
|
5
|
Persson AI, Petritsch C, Swartling FJ,
Itsara M, Sim FJ, Auvergne R, Goldenberg DD, Vandenberg SR, Nguyen
KN, Yakovenko S, et al: Non-stem cell origin for oligodendroglioma.
Cancer Cell. 18:669–682. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kreso A and Dick JE: Evolution of the
cancer stem cell model. Cell Stem Cell. 14:275–291. 2014.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Pointer KB, Clark PA, Zorniak M and
Arlfaei BM: Glioblastoma cancer stem cells: Biomarker and
therapeutic advances. Neurochem Int. 71:1–7. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schonberg DL, Lubelski D, Miller TE and
Rich JN: Brain tumor stem cells: Molecular characteristics and
their impact on therapy. Mol Aspects Med. 39:82–101. 2014.
View Article : Google Scholar
|
9
|
Jovčevska I, Kočevar N and Komel R: Glioma
and glioblastoma how much do we (not) know? Mol Clin Oncol.
1:935–941. 2013.
|
10
|
Ohgaki H and Kleihues P: Genetic pathways
to primary and secondary glioblastoma. Am J Pathol. 170:1445–1453.
2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tirapelli LF, Bolini PH, Tirapelli DP,
Peria FM, Becker AN, Saggioro FP and Carlotti CG Jr: Caspase-3 and
Bcl-2 expression in glioblastoma: an immunohistochemical study. Arq
Neuropsiquiatr. 68:603–607. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ohgaki H and Kleihues P: Genetic
alterations and signaling pathways in the evolution of gliomas.
Cancer Sci. 100:2235–2241. 2009. View Article : Google Scholar : PubMed/NCBI
|
13
|
Iacob G and Dinca EB: Current data and
strategy in glioblastoma multiforme. J Med Life. 2:386–393.
2009.
|
14
|
Ahmed R, Oborski MJ, Hwang M, Lieberman FS
and Mountz JM: Malignant gliomas: current perspectives in
diagnosis, treatment, and early response assessment using advanced
quantitative imaging methods. Cancer Manag Res. 6:149–170.
2014.PubMed/NCBI
|
15
|
Bralten LBC and French PJ: Genetic
alterations in glioma. Cancers. 3:1129–1140. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kleihues P, Louis DN, Scheithauer BW,
Rorke LB, Reifenberger G, Burger PC and Cavenee WK: The WHO
classification of tumors of the nervous system. J Neuropathol Exp
Neurol. 61:215–225. 2002.PubMed/NCBI
|
17
|
Barazzuol L, Jena R, Burnet NG, Jeynes JC,
Merchant MJ, Kirkby KJ and Kirkby NF: In vitro evaluation of
combined temozolomide and radiotherapy using X rays and high-linear
energy transfer radiation for glioblastoma. Radiat Res.
177:651–662. 2012. View Article : Google Scholar : PubMed/NCBI
|
18
|
Fruehauf JP, Brem H, Brem S, Sloan A,
Barger G, Huang W and Parker R: In vitro drug response and
molecular markers associated with drug resistance in malignant
gliomas. Clin Cancer Res. 12:4523–4532. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
Westhoff MA, Brühl O, Nonnenmacher L,
Karpel-Massler G and Debatin KM: Killing me softly - future
challenges in apoptosis research. Int J Mol Sci. 15:3746–3767.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Redmond KM, Wilson TR, Johnston PG and
Longley DB: Resistance mechanisms to cancer chemotherapy. Front
Biosci. 13:5138–5154. 2008. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Riffkin CD, Gray AZ, Hawkins CJ, Chow CW
and Ashley DM: Ex vivo pediatric brain tumors express Fas (CD95)
and FasL (CD95L) and are resistant to apoptosis induction. Neuro
Oncol. 3:229–240. 2001.PubMed/NCBI
|
22
|
Krajewski S, Krajewska M, Ehrmann J,
Sikorska M, Lach B, Chatten J and Reed JC: Immunohistochemical
analysis of bcl-2, Bcl-X, Mcl-1, and Bax in tmors of central and
peripheral nervous system origin. Am J Pathol. 150:805–814.
1997.PubMed/NCBI
|
23
|
Kogel D, Fulda S and Mittelbronn M:
Therapeutic exploitation of apoptosis and autophagy for
glioblastoma. Anticancer Agents Med Chem. 10:438–449. 2010.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Portt L, Norman G, Clapp C, Greenwood M
and Greenwood MT: Anti-apoptosis and cell survival: a review.
Biochim Biophys Acta. 1813:238–259. 2011. View Article : Google Scholar
|
25
|
Fulda S and Debatin KM: Extrinsic versus
intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene.
25:4798–4811. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Putcha GV, Harris CA, Moulder KL, Easton
RM, Thompson CB and Johnson EM Jr: Intrinsic and extrinsic pathway
signaling during neuronal apoptosis: lessons from the analysis of
mutant mice. J Cell Biol. 157:441–453. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Thomas S, Quinn BA, Das SK, Dash R, Emdad
L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, Sarkar D and
Fisher PB: Targeting the Bcl-2 family for cancer therapy. Expert
Opin Ther Targets. 17:61–75. 2013. View Article : Google Scholar
|
28
|
Tchoghadjian A, Jennewein C, Eckhardt I,
Momma S, Branger DF and Fulda S: Smac mimetic promotes glioblastoma
cancer stem-like cell differntiation by activating NF-κB. Cell
Death Differ. 21:735–747. 2014. View Article : Google Scholar
|
29
|
Sayers TJ: Targeting the extrinsic
apoptosis signaling pathway for cancer therapy. Cancer Immunol
Immunother. 60:1173–1180. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wong RS: Apoptosis in cancer: from
pathogenesis to treatment. J Exp Clin Cancer Res. 30:872011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hervouet E, Cheray M, Vallette FM and
Cartron PF: DNA methylation and apoptosis resistance in cancer
cells. Cells. 2:545–573. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kelly G and Strasser A: The role of Bcl-2
and its pro-survival relatives in tumourigenesis and cancer
therapy. Cell Death Differ. 18:1414–1424. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Llambi F and Green DR: Apoptosis and
oncogenesis: give and take in the BCL-2 family. Curr Opin Genet
Dev. 21:12–20. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Kim H, Tu HC, Ren D, Takeuchi O, Jeffers
JR, Zambetti GP, Hsieh JJ and Cheng EH: Stepwise activation of Bax
and Bak by tBid, Bim, and Puma initiates mitochondrial apoptosis.
Mol Cell. 36:487–499. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Bender A, Opel D, Naumann I, Kappeler R,
Friedman L, von Schweinitz D, Debatin KM and Fulda S: PI3K
inhibitors prime neuroblastoma cells for chemotherapy by shifting
the balance towards pro-apoptotic Bcl-2 proteins and enhanced
mitochondrial apoptosis. Oncogene. 30:494–503. 2011. View Article : Google Scholar
|
36
|
Ghobrial IM, Witzig TE and Adjei AA:
Targeting apoptosis pathways in cancer therapy. Cancer J Clin.
55:178–194. 2005. View Article : Google Scholar
|
37
|
Zubor P, Hatok J, Moricova P, Kapustova I,
Kajo K, Mendelova A, Sivonova MK and Danko J: Gene expression
profiling of histologically normal breast tissue in females with
human epidermal growth factor receptor 2-positive breast cancer.
Mol Med Rep. 11:1421–1427. 2015.
|
38
|
Zubor P, Hatok J, Galo S, Dokus K,
Klobusiakova D, Danko J and Racay P: Anti-apoptotic and
pro-apoptotic gene expression evaluated from eutopic endometrium in
the proliferative phase of the menstrual cycle among women with
endometriosis and healthy controls. Eur J Obstet Gynecol Reprod
Biol. 145:172–176. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Vitucci M, Hayes DN and Miller CR: Gene
expression profiling of gliomas: merging genomic and
histopathological classification for personalised therapy. Br J
Cancer. 104:545–553. 2011. View Article : Google Scholar :
|
40
|
Cancer Genome Atlas Research Network:
Comprehensive genomic characterization defines human glioblastoma
genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shiozaki EN and Shi Y: Caspases, IAPs and
Smac/DIABLO: mechanisms from structural biology. Trends Biochem
Sci. 29:486–494. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Shi Y: Mechanisms of caspase activation
and inhibition during apoptosis. Mol Cell. 9:459–470. 2002.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Verhagen AM, Coulson EJ and Vaux DL:
Inhibitor of apoptosis proteins and their relatives: IAPs and other
BIRPs. Genome Biol. 2:REVIEWS3009. 2001. View Article : Google Scholar : PubMed/NCBI
|
44
|
Maier JK, Lahoua Z, Gendron NH, Fetni R,
Johnston A, Davoodi J, Rasper D, Roy S, Slack RS, Nicholson DW and
MacKenzie AE: The neuronal apoptosis inhibitory protein is a direct
inhibitor of caspases 3 and 7. J Neurosci. 22:2035–2043.
2002.PubMed/NCBI
|
45
|
Holcik M, Thompson CS, Yaraghi Z, Lefebvre
CA, MacKenzie AE and Korneluk RG: The hippocampal neurons of
neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice
display increased vulnerability to kainic acid-induced injury. Proc
Natl Acad Sci USA. 97:2286–2290. 2000. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT,
Liu B and Bao JK: Programmed cell death pathways in cancer: a
review of apoptosis, autophagy and programmed necrosis. Cell
Prolif. 45:487–498. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ghavami S, Hashemi M, Ande SR, Yeganeh B,
Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ and
Los M: Apoptosis and cancer: mutations within caspase genes. J Med
Genet. 46:497–510. 2009. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kurokawa M and Kornbluth S: Caspases and
kinases in a death grip. Cell. 138:838–854. 2009. View Article : Google Scholar : PubMed/NCBI
|
49
|
Tanase C, Albulescu R, Codrici E, Calenic
B, Popescu ID, Mihai S, Necula L, Cruceru ML and Hinescu ME:
Decreased expression of APAF-1 and increased expression of
cathepsin B in invasive pituitary adenoma. Onco Targets Ther.
8:81–90. 2014. View Article : Google Scholar
|
50
|
Yuan S and Akey CW: Apoptosome structure,
assembly and procaspase activation. Structure. 21:501–515. 2013.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Mouhamad S, Galluzzi L, Zermati Y, Castedo
M and Kroemer G: Apaf-1 deficiency causes chromosomal instability.
Cell Cycle. 24:3103–3107. 2007. View Article : Google Scholar
|
52
|
Li P, Nijhawan D, Budihardjo I,
Srinivasula SM, Ahmad M, Alnemri ES and Wang X: Cytochrome c and
dATP-dependent formation of Apaf-1/caspase-9 complex initiates an
apoptotic protease cascade. Cell. 91:479–489. 1997. View Article : Google Scholar : PubMed/NCBI
|
53
|
Karsy M, Neil JA, Guan J, Mark MA, Colman
H and Jensen RL: A practical review of prognostic correlations of
molecular biomarkers in glioblastoma. Neurosurg Focus. 38:E42015.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Wei B, Wang I, Du Ch, Hu G, Wang L, Jin Y
and Kong D: Identification of differentially expressed genes
regulated by transcription factors in glioblastomas by
bioinformatics analysis. Mol Med Rep. 11:2548–2554. 2015.
|
55
|
Stancheva G, Goranova T, Laleva M,
Kamenova M, Mitkova A, Velinov N, Poptodorov G, Mitev V, Kaneva R
and Gabrovsky N: IDH1/IDH2 but not TP53 mutations predict prognosis
in Bulgarian glioblastoma patients. Biomed Res Int.
2014:6547272014. View Article : Google Scholar : PubMed/NCBI
|
56
|
England B, Huang T and Karsy M: Current
understanding of the role and targeting of tumor suppressor p53 in
glioblastoma multiforme. Tumor Biol. 34:2063–2074. 2013. View Article : Google Scholar
|
57
|
Li J, Di Ch, Mattox AK, Wu L and Adamson
DC: The future role of personalized medicine in the treatment of
glioblastoma multiforme. Pharmacogen Personal Med. 3:111–127.
2010.
|
58
|
Vogler M: Targeting BCL2 proteins for the
treatment of solid tumours. Advances in Medicine. 2014:ID 943648.
2014. View Article : Google Scholar
|
59
|
Elmore S: Apoptosis: a review of
programmed cell death. Toxicol Pathol. 35:495–516. 2007. View Article : Google Scholar : PubMed/NCBI
|
60
|
Tagscherer KE, Fassl A, Campos B, Farhadi
M, Kraemer A, Böck BC, Macher-Goeppinger S, Radlwimmer B, Wiestler
OD, Herold-Mende C and Roth W: Apoptosis-based treatment of
glioblastomas with ABT-737, a novel small molecule inhibitor of
Bcl-2 family proteins. Oncogene. 27:6646–6656. 2008. View Article : Google Scholar : PubMed/NCBI
|
61
|
Reed JC, Meister L, Tanaka S, Cuddy M, Yum
S, Geyer C and Pleasure D: Differential expression of bcl2
protooncogene in neuroblastoma and others human tumor cell lines of
neural origin. Cancer Res. 51:6529–6538. 1991.PubMed/NCBI
|
62
|
Mercer EA, Korhonen L, Skoglösa Y, Olsson
PA, Kukkonen JP and Lindholm D: NAIP interacts with hippocalcin and
protects neurons against calcium-induced cell death through
caspase-3-dependent and -independent pathways. EMBO J.
19:3597–3607. 2000. View Article : Google Scholar : PubMed/NCBI
|
63
|
Wen X, Lin ZQ, Liu B and Wei YQ:
Caspase-mediated programmed cell death pathways as potential
therapeutic targets in cancer. Cell Prolif. 45:217–224. 2012.
View Article : Google Scholar : PubMed/NCBI
|
64
|
Ashley DM, Riffkin CD, Muscat AM, Knight
MJ, Kaye AH, Novak U and Hawkins CJ: Caspase 8 is absent or low in
many ex vivo gliomas. Cancer. 104:1487–1496. 2005. View Article : Google Scholar : PubMed/NCBI
|
65
|
Yoshino A, Ogino A, Yachi K, Ohta T,
Fukushima T, Watanabe T, Katayama Y, Okamoto Y, Naruse N, Sano E
and Tsumoto K: Gene expression profiling predicts response to
temozolomide in malignant gliomas. Int J Oncol. 36:1367–1377. 2010.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Bredel M, Bredel C, Juric D, Duran GE, Yu
RX, Harsh GR, Vogel H, Recht LD, Scheck AC and Sikic BI: Tumor
necrosis factor-alpha-induced protein 3 as a putative regulator of
nuclear factor-kappaB-mediated resistance to O6-alkylating agents
in human glioblastomas. J Clin Oncol. 24:274–287. 2006. View Article : Google Scholar
|
67
|
Saggioro FP, Neder L, Stávale JN,
Paixao-Becker AN, Malheiros SM, Soares FA, Pittella JE, Matias CC,
Colli BO, Carlotti CG Jr, et al: Fas, FasL, and cleaved caspases 8
and 3 in glioblastomas: a tissue microarray-based study. Pathol Res
Pract. 210:267–273. 2014. View Article : Google Scholar : PubMed/NCBI
|
68
|
Siegelin MD, Gaiser T and Siegelin Y: The
XIAP inhibitor Embelin enhances TRAIL-mediated apoptosis in
malignant glioma cells by down-regulation of the short isoform of
FLIP. Neurochem Int. 55:423–30. 2009. View Article : Google Scholar : PubMed/NCBI
|