1
|
Guerreiro PM, Renfro JL, Power DM and
Canario AV: The parathyroid hormone family of peptides: structure,
tissue distribution, regulation, and potential functional roles in
calcium and phosphate balance in fish. Am J Physiol Regul Integr
Comp Physiol. 292:R679–R696. 2007. View Article : Google Scholar
|
2
|
On JS, Chow BK and Lee LT: Evolution of
parathyroid hormone receptor family and their ligands in
vertebrate. Front Endocrinol (Lausanne). 6:282015.
|
3
|
Dobolyi A, Palkovits M and Usdin TB: The
TIP39-PTH2 receptor system: unique peptidergic cell groups in the
brainstem and their interactions with central regulatory
mechanisms. Prog Neurobiol. 90:29–59. 2010. View Article : Google Scholar :
|
4
|
Potthoff SA, Janus A, Hoch H, Frahnert M,
Tossios P, Reber D, Giessing M, Klein HM, Schwertfeger E, Quack I,
et al: PTH-receptors regulate norepinephrine release in human heart
and kidney. Regul Pept. 171:35–42. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pioszak AA and Xu HE: Molecular
recognition of parathyroid hormone by its G protein-coupled
receptor. Proc Natl Acad Sci USA. 105:5034–5039. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Abou-Samra AB, Jüppner H, Force T, Freeman
MW, Kong XF, Schipani E, Urena P, Richards J, Bonventre JV and
Potts JT Jr: Expression cloning of a common receptor for
parathyroid hormone and parathyroid hormone-related peptide from
rat osteoblast-like cells: a single receptor stimulates
intracellular accumulation of both cAMP and inositol trisphosphates
and increases intracellular free calcium. Proc Natl Acad Sci USA.
89:2732–2736. 1992. View Article : Google Scholar
|
7
|
Silva BC and Bilezikian JP: Parathyroid
hormone: anabolic and catabolic actions on the skeleton. Curr Opin
Pharmacol. 22:41–50. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lupp A, Klenk C, Röcken C, Evert M, Mawrin
C and Schulz S: Immunohistochemical identification of the PTHR1
parathyroid hormone receptor in normal and neoplastic human
tissues. Eur J Endocrinol. 162:979–986. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Romero G, Sneddon WB, Yang Y, Wheeler D,
Blair HC and Friedman PA: Parathyroid hormone receptor directly
interacts with dishevelled to regulate beta-Catenin signaling and
osteoclastogenesis. J Biol Chem. 285:14756–14763. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Tohmonda T, Yoda M, Mizuochi H, Morioka H,
Matsumoto M, Urano F, Toyama Y and Horiuchi K: The IRE1α-XBP1
pathway positively regulates parathyroid hormone (PTH)/PTH-related
peptide receptor expression and is involved in pth-induced
osteoclastogenesis. J Biol Chem. 288:1691–1695. 2013. View Article : Google Scholar :
|
11
|
Dempster DW, Hughes-Begos CE,
Plavetic-Chee K, Brandao-Burch A, Cosman F, Nieves J, Neubort S, Lu
SS, Iida-Klein A, Arnett T and Lindsay R: Normal human osteoclasts
formed from peripheral blood monocytes express PTH type 1 receptors
and are stimulated by PTH in the absence of osteoblasts. J Cell
Biochem. 95:139–148. 2005. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jilka RL: Are osteoblastic cells required
for the control of osteoclast activity by parathyroid hormone? Bone
Miner. 1:261–266. 1986.PubMed/NCBI
|
13
|
Del Fattore A, Teti A and Rucci N:
Osteoclast receptors and signaling. Arch Biochem Biophys.
473:147–160. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ludwig J, Kerscher S, Brandt U, Pfeiffer
K, Getlawi F, Apps DK and Schägger H: Identification and
characterization of a novel 9.2-kDa membrane sector-associated
protein of vacuolar proton-ATPase from chromaffin granules. J Biol
Chem. 273:10939–10947. 1998. View Article : Google Scholar : PubMed/NCBI
|
15
|
Su Y, Zhou A, Al-Lamki RS and Karet FE:
The a-subunit of the V-type H+-ATPase interacts with
phosphofructokinase-1 in humans. J Biol Chem. 278:20013–20018.
2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR
and Zheng MH: V-ATPases in osteoclasts: structure, function and
potential inhibitors of bone resorption. Int J Biochem Cell Biol.
44:1422–1435. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Toro EJ, Ostrov DA, Wronski TJ and
Holliday LS: Rational identification of enoxacin as a novel
V-ATPase-directed osteoclast inhibitor. Curr Protein Pept Sci.
13:180–191. 2012. View Article : Google Scholar :
|
18
|
Drory O and Nelson N: The emerging
structure of vacuolar ATPases. Physiology (Bethesda). 21:317–325.
2006. View Article : Google Scholar
|
19
|
Manolson MF, Yu H, Chen W, Yao Y, Li K,
Lees RL and Heersche JN: The a3 isoform of the 100-kDa V-ATPase
subunit is highly but differentially expressed in large (≥10
nuclei) and small (≤nuclei) osteoclasts. J Biol Chem.
278:49271–49278. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Niikura K: Vacuolar ATPase as a drug
discovery target. Drug News Perspect. 19:139–144. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Nishi T, Kawasaki-Nishi S and Forgac M:
Expression and function of the mouse V-ATPase d subunit isoforms. J
Biol Chem. 278:46396–46402. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu H, Xu G and Li YP: Atp6v0d2 is an
essential component of the osteoclast-specific proton pump that
mediates extracellular acidification in bone resorption. J Bone
Miner Res. 24:871–885. 2009. View Article : Google Scholar :
|
23
|
Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim
N, Kang JS, Miyamoto T, Suda T, Lee SK, et al: v-ATPase
V0 subunit d2-deficient mice exhibit impaired osteoclast
fusion and increased bone formation. Nat Med. 12:1403–1409. 2006.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Bell O, Silver J and Naveh-Many T:
Parathyroid hormone, from gene to protein. Molecular Biology of the
Parathyroid. Naveh-Many T: Landes Bioscience and Kluwer Academic;
New York: pp. 8–28. 2005, View Article : Google Scholar
|
25
|
Huang JC, Sakata T, Pfleger LL, Bencsik M,
Halloran BP, Bikle DD and Nissenson RA: PTH differentially
regulates expression of RANKL and OPG. J Bone Miner Res.
19:235–244. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lee SK and Lorenzo JA: Parathyroid hormone
stimulates TRANCE and inhibits osteoprotegerin messenger
ribonucleic acid expression in murine bone marrow cultures:
correlation with osteoclast-like cell formation. Endocrinology.
140:3552–3561. 1999.PubMed/NCBI
|
27
|
Rhee Y, Bivi N, Farrow E, Lezcano V,
Plotkin LI, White KE and Bellido T: Parathyroid hormone receptor
signaling in osteocytes increases the expression of fibroblast
growth factor-23 in vitro and in vivo. Bone. 49:636–643. 2011.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Lamothe B, Lai Y, Xie M, Schneider MD and
Darnay BG: TAK1 is essential for osteoclast differentiation and is
an important modulator of cell death by apoptosis and necroptosis.
Mol Cell Biol. 33:582–595. 2013. View Article : Google Scholar :
|
29
|
Koizumi K, Ito Y, Kojima K and Fujii T:
Isolation and characterization of the plasma membranes from rat
ascites hepatomas and from normal rat livers, including newborn,
regenerating, and adult livers. J Biochem. 79:739–748.
1976.PubMed/NCBI
|
30
|
Wang YH, Liu Y, Buhl K and Rowe DW:
Comparison of the action of transient and continuous PTH on primary
osteoblast cultures expressing differentiation stage-specific GFP.
J Bone Miner Res. 20:5–14. 2005. View Article : Google Scholar
|
31
|
Udagawa N, Takahashi N, Akatsu T, Tanaka
H, Sasaki T, Nishihara T, Koga T, Martin TJ and Suda T: Origin of
osteoclasts: mature monocytes and macrophages are capable of
differentiating into osteoclasts under a suitable microenvironment
prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci
USA. 87:7260–7264. 1990. View Article : Google Scholar : PubMed/NCBI
|
32
|
Blair HC and Athanasou NA: Recent advances
in osteoclast biology and pathological bone resorption. Histol
Histopathol. 19:189–199. 2004.PubMed/NCBI
|
33
|
Cannata-Andía JB, Rodriguez García M and
Gómez Alonso C: Osteoporosis and adynamic bone in chronic kidney
disease. J Nephrol. 26:73–80. 2013. View Article : Google Scholar
|
34
|
Zou W and Teitelbaum SL: Integrins, growth
factors, and the osteoclast cytoskeleton. Ann N Y Acad Sci.
1192:27–31. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Yuan FL, Li X, Lu WG, Li CW, Li JP and
Wang Y: The vacuolar ATPase in bone cells: a potential therapeutic
target in osteoporosis. Mol Biol Rep. 37:3561–3566. 2010.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Oksala N, Levula M, Pelto-Huikko M,
Kytömäki L, Soini JT, Salenius J, Kähönen M, Karhunen PJ, Laaksonen
R, Parkkila S and Lehtimäki T: Carbonic anhydrases II and XII are
up-regulated in osteoclast-like cells in advanced human
atherosclerotic plaques-Tampere Vascular Study. Ann Med.
42:360–370. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Josephsen K, Praetorius J, Frische S,
Gawenis LR, Kwon TH, Agre P, Nielsen S and Fejerskov O: Targeted
disruption of the Cl−/HCO3−
exchanger Ae2 results in osteopetrosis in mice. Proc Natl Acad Sci
USA. 106:1638–1641. 2009. View Article : Google Scholar
|
38
|
Hunter SJ, Schraer H and Gay CV:
Characterization of isolated and cultured chick osteoclasts: the
effects of acetazolamide, calcitonin, and parathyroid hormone on
acid production. J Bone Miner Res. 3:297–303. 1988. View Article : Google Scholar : PubMed/NCBI
|
39
|
Gay CV, Kief NL and Bekker PJ: Effect of
estrogen on acidification in osteoclasts. Biochem Biophys Res
Commun. 192:1251–1259. 1993. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wang BL, Liang H, Zheng F, Li XX, Liu YB
and Dai CL: Recombinant soluble receptor activator of nuclear
factor-kappaB inhibits parathyroid hormone-induced
osteoclastogenesis in vitro. Sheng Li Xue Bao. 59:169–174.
2007.PubMed/NCBI
|
41
|
Gay CV, Zheng B and Gilman VR:
Co-detection of PTH/PTHrP receptor and tartrate resistant acid
phosphatase in osteoclasts. J Cell Biochem. 89:902–908. 2003.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Langub MC, Monier-Faugere MC, Qi Q, Geng
Z, Koszewski NJ and Malluche HH: Parathyroid hormone/parathyroid
hormone-related peptide type 1 receptor in human bone. J Bone Miner
Res. 16:448–456. 2001. View Article : Google Scholar : PubMed/NCBI
|
43
|
Faucheux C, Horton MA and Price JS:
Nuclear localization of type I parathyroid hormone/parathyroid
hormone-related protein receptors in deer antler osteoclasts:
evidence for parathyroid hormone-related protein and receptor
activator of NF-kappaB-dependent effects on osteoclast formation in
regenerating mammalian bone. J Bone Miner Res. 17:455–464. 2002.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Libutti SK, Alexander HR, Bartlett DL,
Sampson ML, Ruddel ME, Skarulis M, Marx SJ, Spiegel AM, Simmonds W
and Remaley AT: Kinetic analysis of the rapid intraoperative
parathyroid hormone assay in patients during operation for
hyperparathyroidism. Surgery. 126:1145–1150; discussion 1150–1151.
1999. View Article : Google Scholar : PubMed/NCBI
|
45
|
Niendorf A, Dietel M, Arps H and Childs
GV: A novel method to demonstrate parathyroid hormone binding on
unfixed living target cells in culture. J Histochem Cytochem.
36:307–309. 1988. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hefley TJ and Stern PH: Isolation of
osteoclasts from fetal rat long bones. Calcif Tissue Int.
34:480–487. 1982. View Article : Google Scholar : PubMed/NCBI
|