1
|
Magenta A, Greco S, Gaetano C and Martelli
F: Oxidative stress and microRNAs in vascular diseases. Int J Mol
Sci. 14:17319–17346. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wen YD, Wang H, Kho SH, Rinkiko S, Sheng
X, Shen HM and Zhu YZ: Hydrogen sulfide protects HUVECs against
hydrogen peroxide induced mitochondrial dysfunction and oxidative
stress. PLoS One. 8:e531472013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Badimon L, Storey RF and Vilahur G: Update
on lipids, inflammation and atherothrombosis. Thromb Haemost.
105(Suppl 1): S34–S42. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Rocha VZ and Libby P: Obesity,
inflammation, and atherosclerosis. Nat Rev Cardiol. 6:399–409.
2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sprague AH and Khalil RA: Inflammatory
cytokines in vascular dysfunction and vascular disease. Biochem
Pharmacol. 78:539–552. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Immenschuh S and Schröder H: Heme
oxygenase-1 and cardiovascular disease. Histol Histopathol.
21:679–685. 2006.PubMed/NCBI
|
7
|
Armstrong AW, Voyles SV, Armstrong EJ,
Fuller EN and Rutledge JC: Angiogenesis and oxidative stress:
common mechanisms linking psoriasis with atherosclerosis. J
Dermatol Sci. 63:1–9. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen YH, Lin SJ, Chen YL, Liu PL and Chen
JW: Anti-inflammatory effects of different drugs/agents with
antioxidant property on endothelial expression of adhesion
molecules. Cardiovasc Hematol Disord Drug Targets. 6:279–304. 2006.
View Article : Google Scholar
|
9
|
Fukai T and Ushio-Fukai M: Superoxide
dismutases: role in redox signaling, vascular function, and
diseases. Antioxid Redox Signal. 15:1583–1606. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Seguí J, Gironella M, Sans M, Granell S,
Gil F, Gimeno M, Coronel P, Piqué JM and Panés J: Superoxide
dismutase ameliorates TNBS-induced colitis by reducing oxidative
stress, adhesion molecule expression, and leukocyte recruitment
into the inflamed intestine. J Leukoc Biol. 76:537–544. 2004.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Lubrano V and Balzan S: LOX-1 and ROS,
inseparable factors in the process of endothelial damage. Free
Radic Res. 48:841–848. 2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Shuvaev VV, Han J, Tliba S, Arguiri E,
Christofidou-Solomidou M, Ramirez SH, Dykstra H, Persidsky Y,
Atochin DN, Huang PL and Muzykantov VR: Anti-inflammatory effect of
targeted delivery of SOD to endothelium: mechanism, synergism with
NO donors and protective effects in vitro and in vivo. PLoS One.
8:e770022013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zahid M and Robbins PD: Protein
transduction domains: applications for molecular medicine. Curr
Gene Ther. 12:374–380. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bechara C and Sagan S: Cell-penetrating
peptides: 20 years later, where do we stand? FEBS Lett.
587:1693–1702. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim MJ, Kim DW, Lee BR, Shin MJ, Kim YN,
Eom SA, Park BJ, Cho YS, Han KH, Park J, et al: Transduced
Tat-glyoxalase protein attenuates streptozotocin-induced diabetes
in a mouse model. Biochem Biophys Res Commun. 430:294–300. 2013.
View Article : Google Scholar
|
16
|
Song HY, Ju SM, Goh AR, Kwon DJ, Choi SY
and Park J: Suppression of TNF-alpha-induced MMP-9 expression by a
cell-permeable superoxide dismutase in keratinocytes. BMB Rep.
44:462–467. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kwon HY, Eum WS, Jang HW, Kang JH, Ryu J,
Ryong Lee B, Jin LH, Park J and Choi SY: Transduction of
Cu,Zn-superoxide dismutase mediated by an HIV-1 Tat protein basic
domain into mammalian cells. FEBS Lett. 485:163–167. 2000.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kwon HM, Choi YJ, Choi JS, Kang SW, Bae
JY, Kang IJ, Jun JG, Lee SS, Lim SS and Kang YH: Blockade of
cytokine-induced endothelial cell adhesion molecule expression by
licorice isoliquiritigenin through NF-kappaB signal disruption. Exp
Biol Med (Maywood). 232:235–245. 2007.
|
19
|
Kim MS, Kim DS, Kim HS, Kang SW and Kang
YH: Inhibitory effects of luteolin on transendothelial migration of
monocytes and formation of lipid-laden macrophages. Nutrition.
28:1044–1054. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Steed E, Balda MS and Matter K: Dynamics
and functions of tight junctions. Trends Cell Biol. 20:142–149.
2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hordijk PL: Endothelial signalling events
during leukocyte transmigration. FEBS J. 273:4408–4415. 2006.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Carillon J, Rouanet JM, Cristol JP and
Brion R: Superoxide dismutase administration, a potential therapy
against oxidative stress related diseases: several routes of
supplementation and proposal of an original mechanism of action.
Pharm Res. 30:2718–2728. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wong GH: Protective roles of cytokines
against radiation: induction of mitochondrial MnSOD. Biochim
Biophys Acta. 1271:205–209. 1995. View Article : Google Scholar : PubMed/NCBI
|
24
|
Holley AK, Dhar SK, Xu Y and St Clair DK:
Manganese superoxide dismutase: beyond life and death. Amino Acids.
42:139–158. 2012. View Article : Google Scholar
|
25
|
Day BJ: Catalase and glutathione
peroxidase mimics. Biochem Pharmacol. 77:285–296. 2009. View Article : Google Scholar :
|
26
|
Miriyala S, Spasojevic I, Tovmasyan A,
Salvemini D, Vujaskovic Z, St Clair D and Batinic-Haberle I:
Manganese superoxide dismutase, MnSOD and its mimics. Biochim
Biophys Acta. 1822:794–814. 2012. View Article : Google Scholar :
|
27
|
Samai M, Sharpe MA, Gard PR and Chatterjee
PK: Comparison of the effects of the superoxide dismutase mimetics
EUK-134 and tempol on paraquat-induced nephrotoxicity. Free Radic
Biol Med. 43:528–534. 2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sun X, Belkin N and Feinberg MW:
Endothelial microRNAs and atherosclerosis. Curr Atheroscler Rep.
15:3722013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Varga ZV, Giricz Z, Liaudet L, Haskó G,
Ferdinandy P and Pacher P: Interplay of oxidative,
nitrosative/nitrative stress, inflammation, cell death and
autophagy in diabetic cardiomyopathy. Biochim Biophys Acta.
1852:232–242. 2015. View Article : Google Scholar
|
30
|
Han J, Shuvaev VV and Muzykantov VR:
Catalase and superoxide dismutase conjugated with
platelet-endothelial cell adhesion molecule antibody distinctly
alleviate abnormal endothelial permeability caused by exogenous
reactive oxygen species and vascular endothelial growth factor. J
Pharmacol Exp Ther. 338:82–91. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chang M, Bany-Mohammed F, Kenney MC and
Beharry KD: Effects of a superoxide dismutase mimetic on biomarkers
of lung angiogenesis and alveolarization during hyperoxia with
intermittent hypoxia. Am J Transl Res. 5:594–607. 2013.PubMed/NCBI
|
32
|
Kim YW, West XZ and Byzova TV:
Inflammation and oxidative stress in angiogenesis and vascular
disease. J Mol Med Berl. 91:323–328. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu C, Wu J and Zou MH: Activation of
AMP-activated protein kinase alleviates high-glucose-induced
dysfunction of brain microvascular endothelial cell tight-junction
dynamics. Free Radic Biol Med. 53:1213–1221. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Caraballo JC, Yshii C, Butti ML, Westphal
W, Borcherding JA, Allamargot C and Comellas AP: Hypoxia increases
transepithelial electrical conductance and reduces occludin at the
plasma membrane in alveolar epithelial cells via PKC-ζ and PP2A
pathway. Am J Physiol Lung Cell Mol Physiol. 300:L569–L578. 2011.
View Article : Google Scholar : PubMed/NCBI
|