1
|
Allen TM and Cullis PR: Drug delivery
systems: entering the mainstream. Science. 303:1818–1822. 2004.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang AZ, Gu F, Zhang L, Chan JM,
Radovic-Moreno A, Shaikh MR and Farokhzad OC: Biofunctionalized
targeted nanoparticles for therapeutic applications. Expert Opin
Biol Ther. 8:1063–1070. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang L, Gu FX, Chan JM, Wang AZ, Langer
RS and Farokhzad OC: Nanoparticles in medicine: therapeutic
applications and developments. Clin Pharmacol Ther. 83:761–769.
2008. View Article : Google Scholar
|
4
|
Ji JL, Huang XF and Zhu HL: Curcumin and
its formulations: potential anti-cancer agents. Anticancer Agents
Med Chem. 12:210–218. 2012. View Article : Google Scholar
|
5
|
Yezhelyev MV, Gao X, Xing Y, Al-Hajj A,
Nie S and O'Regan RM: Emerging use of nanoparticles in diagnosis
and treatment of breast cancer. Lancet Oncol. 7:657–667. 2006.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Papahadjopoulos D, Allen TM, Gabizon A,
Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD and
Redemann C: Sterically stabilized liposomes: improvements in
pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad
Sci USA. 88:11460–11464. 1991. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gabizon A and Martin F: Polyethylene
glycol-coated (pegylated) liposomal doxorubicin. Rationale for use
in solid tumours. Drugs. 54(Suppl 4): 15–21. 1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Haran G, Cohen R, Bar LK and Barenholz Y:
Transmembrane ammonium sulfate gradients in liposomes produce
efficient and stable entrapment of amphipathic weak bases. Biochim
Biophys Acta. 1151:201–215. 1993. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gang W, Jie WJ, Ping ZL, Ming S, Ying LJ,
Lei W and Fang Y: Liposomal quercetin: evaluating drug delivery in
vitro and biodistribution in vivo. Expert Opin Drug Deliv.
9:599–613. 2012. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang G, Wang J, Luo J, Wang L, Chen X,
Zhang L and Jiang S: PEG2000-DPSE-coated quercetin nanoparticles
remarkably enhanced anticancer effects through induced programed
cell death on C6 glioma cells. J Biomed Mater Res A. 101:3076–3085.
2013.PubMed/NCBI
|
11
|
Xavier CP, Lima CF, Rohde M and
Pereira-Wilson C: Quercetin enhances 5-fluorouracil-induced
apoptosis in MSI colorectal cancer cells through p53 modulation.
Cancer Chemother Pharmacol. 68:1449–1457. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Siegelin MD, Reuss DE, Habel A, Rami A and
von Deimling A: Quercetin promotes degradation of survivin and
thereby enhances death-receptor-mediated apoptosis in glioma cells.
Neurooncol. 11:122–131. 2009.
|
13
|
Kim EJ, Choi CH, Park JY, Kang SK and Kim
YK: Underlying mechanism of quercetin-induced cell death in human
glioma cells. Neurochem Res. 33:971–979. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Heijnen CG, Haenen GR, van Acker FA, van
der Vijgh WJ and Bast A: Flavonoids as peroxynitrite scavengers:
the role of the hydroxyl groups. Toxicol In Vitro. 15:3–6. 2001.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Ong CS, Tran E, Nguyen TT, Ong CK, Lee SK,
Lee JJ, Ng CP, Leong C and Huynh H: Quercetin-induced growth
inhibition and cell death in nasopharyngeal carcinoma cells are
associated with increase in Bad and hypophosphorylated
retinoblastoma expressions. Oncol Rep. 11:727–733. 2004.PubMed/NCBI
|
16
|
Gupta K and Panda D: Perturbation of
microtubule polymerization by quercetin through tubulin binding: a
novel mechanism of its antiproliferative activity. Biochemistry.
41:13029–13038. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang IK, Lin-Shiau SY and Lin JK:
Induction of apoptosis by apigenin and related flavonoids through
cytochrome c release and activation of caspase-9 and caspase-3 in
leukaemia HL-60 cells. Eur J Cancer. 35:1517–1525. 1999. View Article : Google Scholar
|
18
|
Jakubowicz-Gil J, Langner E and Rzeski W:
Kinetic studies of the effects of Temodal and quercetin on
astrocytoma cells. Pharmacol Rep. 63:403–416. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yang CY, Tsay SY and Tsiang RC:
Encapsulating aspirin into a surfactant-free ethyl cellulose
microsphere using non-toxic solvents by emulsion
solvent-evaporation technique. J Microencapsul. 18:223–236. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Saha S, Reddy ChV, Xu S, Sankar S, Neamati
N and Patro B: Synthesis and SAR studies of marine natural products
ma'edamines A, B and their analogues. Bioorg Med Chem Lett.
23:5135–5139. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zeng LF, Wang Y, Kazemi R, Xu S, Xu ZL,
Sanchez TW, Yang LM, Debnath B, Odde S, Xie H, et al: Repositioning
HIV-1 integrase inhibitors for cancer therapeutics:
1,6-naphthyridine-7-carboxamide as a promising scaffold with
drug-like properties. J Med Chem. 55:9492–9509. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Xu S, Oshima T, Imada T, Masuda M, Debnath
B, Grande F, Garofalo A and Neamati N: Stabilization of MDA-7/IL-24
for colon cancer therapy. Cancer Lett. 335:421–430. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Xu S, Butkevich AN, Yamada R, Zhou Y,
Debnath B, Duncan R, Zandi E, Petasis NA and Neamati N: Discovery
of an orally active small-molecule irreversible inhibitor of
protein disulfide isomerase for ovarian cancer treatment. Proc Natl
Acad Sci USA. 109:16348–16353. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yamada R, Kostova MB, Anchoori RK, Xu S,
Neamati N and Khan SR: Biological evaluation of paclitaxel-peptide
conjugates as a model for MMP2-targeted drug delivery. Cancer Biol
Ther. 9:192–203. 2010. View Article : Google Scholar
|
25
|
Xu S, Grande F, Garofalo A and Neamati N:
Discovery of a novel orally active small-molecule gp130 inhibitor
for the treatment of ovarian cancer. Mol Cancer Ther. 12:937–949.
2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Thirant C, Gavard J, Junier MP and
Chneiweiss H: Critical multiple angiogenic factors secreted by
glioblastoma stem-like cells underline the need for combinatorial
anti-angiogenic therapeutic strategies. Proteomics Clin Appl.
7:79–90. 2013. View Article : Google Scholar
|
27
|
Koide H, Asai T, Hatanaka K, Akai S, Ishii
T, Kenjo E, Ishida T, Kiwada H, Tsukada H and Oku N: T
cell-independent B cell response is responsible for ABC phenomenon
induced by repeated injection of PEGylated liposomes. Int J Pharm.
392:218–223. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ishida T, Atobe K, Wang X and Kiwada H:
Accelerated blood clearance of PEGylated liposomes upon repeated
injections: effect of doxorubicin-encapsulation and high-dose first
injection. J Control Release. 115:251–258. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ishihara T, Takeda M, Sakamoto H, Kimoto
A, Kobayashi C, Takasaki N, Yuki K, Tanaka K, Takenaga M, Igarashi
R, et al: Accelerated blood clearance phenomenon upon repeated
injection of PEG-modified PLA-nanoparticles. Pharm Res.
26:2270–2279. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu Y and Lu W: Recent advances in brain
tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv.
9:671–686. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Lin X, Gao R, Zhang Y, Qi N, Zhang Y,
Zhang K, He H and Tang X: Lipid nanoparticles for chemotherapeutic
applications: strategies to improve anticancer efficacy. Expert
Opin Drug Deliv. 9:767–781. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fang JY and Al-Suwayeh SA: Nanoparticles
as delivery carriers for anticancer prodrugs. Expert Opin Drug
Deliv. 9:657–669. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Battaglia L and Gallarate M: Lipid
nanoparticles: state of the art, new preparation methods and
challenges in drug delivery. Expert Opin Drug Deliv. 9:497–508.
2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hofheinz RD, Gnad-Vogt SU, Beyer U and
Hochhaus A: Liposomal encapsulated anti-cancer drugs. Anticancer
Drugs. 16:691–707. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Agnihotri S, Gajadhar AS, Ternamian C,
Gorlia T, Diefes KL, Mischel PS, Kelly J, McGown G, Thorncroft M,
Carlson BL, et al: Alkylpurine-DNA-N-glycosylase confers resistance
to temozolomide in xenograft models of glioblastoma multiforme and
is associated with poor survival in patients. J Clin Invest.
122:253–266. 2012. View Article : Google Scholar :
|
36
|
Russo M, Spagnuolo C, Tedesco I, Bilotto S
and Russo GL: The flavonoid quercetin in disease prevention and
therapy: facts and fancies. Biochem Pharmacol. 83:6–15. 2012.
View Article : Google Scholar
|
37
|
Boots AW, Balk JM, Bast A and Haenen GR:
The reversibility of the glutathionyl-quercetin adduct spreads
oxidized quercetin-induced toxicity. Biochem Biophys Res Commun.
338:923–929. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Boots AW, Li H, Schins RP, Duffin R,
Heemskerk JW, Bast A and Haenen GR: the quercetin paradox. Toxicol
Appl Pharmacol. 222:89–96. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ferraresi R, Troiano L, Roat E, Lugli E,
Nemes E, Nasi M, Pinti M, Fernandez MI, Cooper EL and Cossarizza A:
Essential requirement of reduced glutathione (GSH) for the
anti-oxidant effect of the flavonoid quercetin. Free Radic Res.
39:1249–1258. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lee SW, Kim HK, Lee NH, Yi HY, Kim HS,
Hong SH, Hong YK and Joe YA: The synergistic effect of combination
temozolomide and chloroquine treatment is dependent on autophagy
formation and p53 status in glioma cells. Cancer Lett. 360:195–204.
2015. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zheng H, Ying H, Yan H, Kimmelman AC,
Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, et al: p53
and Pten control neural and glioma stem/progenitor cell renewal and
differentiation. Nature. 455:1129–1133. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lino MM and Merlo A: PI3Kinase signaling
in glioblastoma. J Neurooncol. 103:417–427. 2011. View Article : Google Scholar :
|
43
|
Fan QW, Cheng C, Hackett C, Feldman M,
Houseman BT, Nicolaides T, Haas-Kogan D, James CD, Oakes SA,
Debnath J, et al: Akt and autophagy cooperate to promote survival
of drug-resistant glioma. Sci Signal. 3:ra812010.PubMed/NCBI
|
44
|
Ahmed F and Discher DE: Self-porating
polymersomes of PEG-PLA and PEG-PCL: Hydrolysis-triggered
controlled release vesicles. J Control Release. 96:37–53. 2004.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Cai S, Vijayan K, Cheng D, Lima EM and
Discher DE: Micelles of different morphologies - advantages of
worm-like filomicelles of PEO-PCL in paclitaxel delivery. Pharm
Res. 24:2099–2109. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Ahmed F, Pakunlu RI, Srinivas G, Brannan
A, Bates F, Klein ML, Minko T and Discher DE: Shrinkage of a
rapidly growing tumor by drug-loaded polymersomes: pH-triggered
release through copolymer degradation. Mol Pharm. 3:340–350. 2006.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Kumar N, Ravikumar MN and Domb AJ:
Biodegradable block copolymers. Adv Drug Deliv Rev. 53:23–44. 2001.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Shive MS and Anderson JM: Biodegradation
and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv
Rev. 28:5–24. 1997. View Article : Google Scholar
|
49
|
Siepmann J and Göpferich A: Mathematical
modeling of bioerodible, polymeric drug delivery systems. Adv Drug
Deliv Rev. 48:229–247. 2001. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chow TH, Lin YY, Hwang JJ, Wang HE, Tseng
YL, Wang SJ, Liu RS, Lin WJ, Yang CS and Ting G: Improvement of
biodistribution and therapeutic index via increase of polyethylene
glycol on drug-carrying liposomes in an HT-29/luc xenografted mouse
model. Anticancer Res. 29:2111–2120. 2009.PubMed/NCBI
|
51
|
Lee JS, Ankone M, Pieters E, Schiffelers
RM, Hennink WE and Feijen J: Circulation kinetics and
biodistribution of dual-labeled polymersomes with modulated surface
charge in tumor-bearing mice: comparison with stealth liposomes. J
Control Release. 155:282–288. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Dams ET, Laverman P, Oyen WJ, Storm G,
Scherphof GL, van Der Meer JW, Corstens FH and Boerman OC:
Accelerated blood clearance and altered biodistribution of repeated
injections of sterically stabilized liposomes. J Pharmacol Exp
Ther. 292:1071–1079. 2000.PubMed/NCBI
|
53
|
Ishida T, Ichikawa T, Ichihara M, Sadzuka
Y and Kiwada H: Effect of the physicochemical properties of
initially injected liposomes on the clearance of subsequently
injected PEGylated liposomes in mice. J Control Release.
95:403–412. 2004. View Article : Google Scholar : PubMed/NCBI
|