Dysregulated mitochondrial and chloroplast bioenergetics from a translational medical perspective (Review)
- Authors:
- George B. Stefano
- Richard M. Kream
-
Affiliations: MitoGenetics, Farmingdale, NY 11735, USA - Published online on: January 28, 2016 https://doi.org/10.3892/ijmm.2016.2471
- Pages: 547-555
-
Copyright: © Stefano et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Stefano GB and Kream R: Psychiatric disorders involving mitochondrial processes. Psychol Obs. 1:1–6. 2015. | |
Stefano GB, Mantione KJ, Casares FM and Kream RM: Anaerobically functioning mitochondria: Evolutionary perspective on modulation of energy metabolism in Mytilus edulis. Invertebrate Surviv J. 12:22–28. 2015. | |
Snyder C and Stefano GB: Mitochondria and chloroplasts shared in animal and plant tissues: Significance of communication. Med Sci Monit. 21:1507–1511. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mantione K, Kream RM and Stefano GB: Variations in critical morphine biosynthesis genes and their potential to influence human health. Neuro Endocrinol Lett. 31:11–18. 2010.PubMed/NCBI | |
Esch T and Stefano G: Proinflammation: A common denominator or initiator of different pathophysiological disease processes. Med Sci Monit. 8:HY1–HY9. 2002.PubMed/NCBI | |
Takahashi E and Sato M: Anaerobic respiration sustains mitochondrial membrane potential in a prolyl hydroxylase pathway-activated cancer cell line in a hypoxic microenvironment. Am J Physiol Cell Physiol. 306:C334–C342. 2014. View Article : Google Scholar | |
Gonzalez MJ, Miranda Massari JR, Duconge J, Riordan NH, Ichim T, Quintero-Del-Rio AI and Ortiz N: The bio-energetic theory of carcinogenesis. Med Hypotheses. 79:433–439. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Z and Stamler JS: Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase. Trends Cardiovasc Med. 16:259–265. 2006. View Article : Google Scholar : PubMed/NCBI | |
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG and Martin WF: Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev. 76:444–495. 2012. View Article : Google Scholar : PubMed/NCBI | |
Watt IN, Montgomery MG, Runswick MJ, Leslie AG and Walker JE: Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci USA. 107:16823–16827. 2010. View Article : Google Scholar : PubMed/NCBI | |
Degli Esposti M: Bioenergetic evolution in proteobacteria and mitochondria. Genome Biol Evol. 6:3238–3251. 2014. View Article : Google Scholar : PubMed/NCBI | |
Aliev G, Priyadarshini M, Reddy VP, Grieg NH, Kaminsky Y, Cacabelos R, Ashraf GM, Jabir NR, Kamal MA, Nikolenko VN, et al: Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr Med Chem. 21:2208–2217. 2014. View Article : Google Scholar : PubMed/NCBI | |
Carvalho C, Machado N, Mota PC, Correia SC, Cardoso S, Santos RX, Santos MS, Oliveira CR and Moreira PI: Type 2 diabetic and Alzheimer's disease mice present similar behavioral, cognitive, and vascular anomalies. J Alzheimers Dis. 35:623–635. 2013.PubMed/NCBI | |
Chong ZZ, Li F and Maiese K: Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol. 75:207–246. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ebadi M, Govitrapong P, Sharma S, Muralikrishnan D, Shavali S, Pellett L, Schafer R, Albano C and Eken J: Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson's disease. Biol Signals Recept. 10:224–253. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kream RM, Mantione KJ, Casares FM and Stefano GB: Impaired expression of ATP-binding cassette transporter genes in diabetic ZDF rat blood. Int J Diabetes Res. 3:49–55. 2014. | |
Kream RM, Mantione KJ, Casares FM and Stefano GB: Concerted dysregulation of 5 major classes of blood leukocyte genes in diabetic ZDF rats: A working translational profile of comorbid rheumatoid arthritis progression. Int J Prev Treat. 3:17–25. 2014. | |
Wang F, Guo X, Shen X, Kream RM, Mantione KJ and Stefano GB: Vascular dysfunction associated with type 2 diabetes and Alzheimer's disease: A potential etiological linkage. Med Sci Monit Basic Res. 20:118–129. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Stefano GB and Kream RM: Epigenetic modification of DRG neuronal gene expression subsequent to nerve injury: Etiological contribution to complex regional pain syndromes (Part I). Med Sci Monit. 20:1067–1077. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Stefano GB and Kream RM: Epigenetic modification of DRG neuronal gene expression subsequent to nerve injury: Etiological contribution to complex regional pain syndromes (Part II). Med Sci Monit. 20:1188–1200. 2014. View Article : Google Scholar : PubMed/NCBI | |
Panksepp J, Herman B, Conner R, Bishop P and Scott JP: The biology of social attachments: Opiates alleviate separation distress. Biol Psychiatry. 13:607–618. 1978.PubMed/NCBI | |
Pierce RC and Kumaresan V: The mesolimbic dopamine system: The final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev. 30:215–238. 2006. View Article : Google Scholar | |
Schmauss C and Emrich HM: Dopamine and the action of opiates: A reevaluation of the dopamine hypothesis of schizophrenia. With special consideration of the role of endogenous opioids in the pathogenesis of schizophrenia. Biol Psychiatry. 20:1211–1231. 1985. View Article : Google Scholar : PubMed/NCBI | |
Stępień A, Stępień M, Wlazeł RN, Paradowski M, Banach M and Rysz J: Assessment of the relationship between lipid parameters and obesity indices in non-diabetic obese patients: A preliminary report. Med Sci Monit. 20:2683–2688. 2014. View Article : Google Scholar | |
Göhring I, Sharoyko VV, Malmgren S, Andersson LE, Spégel P, Nicholls DG and Mulder H: Chronic high glucose and pyruvate levels differentially affect mitochondrial bioenergetics and fuel-stimulated insulin secretion from clonal INS-1 832/13 cells. J Biol Chem. 289:3786–3798. 2014. View Article : Google Scholar : | |
Mantione KJ, Kream RM, Kuzelova H, Ptacek R, Raboch J, Samuel JM and Stefano GB: Comparing bioinformatic gene expression profiling methods: Microarray and RNA-Seq. Med Sci Monit Basic Res. 20:138–142. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kram KE and Finkel SE: Culture volume and vessel affect long-term survival, mutation frequency, and oxidative stress of Escherichia coli. Appl Environ Microbiol. 80:1732–1738. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stefano GB and Kream RM: Hypoxia defined as a common culprit/initiation factor in mitochondrial-mediated proinflammatory processes. Med Sci Monit. 21:1478–1484. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo R, Li W, Liu B, Li S, Zhang B and Xu Y: Resveratrol protects vascular smooth muscle cells against high glucose-induced oxidative stress and cell proliferation in vitro. Med Sci Monit Basic Res. 20:82–92. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yildirim V, Doganci S, Yesildal F, Kaya E, Ince ME, Ozkan G, Gumusel B, Avcu F and Ozgurtas T: Sodium nitrite provides angiogenic and proliferative effects in vivo and in vitro. Med Sci Monit Basic Res. 21:41–46. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davila AF and Zamorano P: Mitochondria and the evolutionary roots of cancer. Phys Biol. 10:0260082013. View Article : Google Scholar : PubMed/NCBI | |
Doeller JE, Grieshaber MK and Kraus DW: Chemolithoheterotrophy in a metazoan tissue: Thiosulfate production matches ATP demand in ciliated mussel gills. J Exp Biol. 204:3755–3764. 2001.PubMed/NCBI | |
Doeller JE, Kraus DW, Shick JM and Gnaiger E: Heat flux, oxygen flux, and mitochondrial redox state as a function of oxygen availability and ciliary activity in excised gills of Mytilus edulis. J Exp Zool. 265:1–8. 1993. View Article : Google Scholar : PubMed/NCBI | |
Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D and Reiter RJ: Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res. 54:127–138. 2013. View Article : Google Scholar | |
Stefano GB, Snyder C and Kream RM: Mitochondria, chloroplasts in animal and plant cells: Significance of conformational matching. Med Sci Monit. 21:2073–2078. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cruz S, Calado R, Serôdio J and Cartaxana P: Crawling leaves: Photosynthesis in sacoglossan sea slugs. J Exp Bot. 64:3999–4009. 2013. View Article : Google Scholar : PubMed/NCBI | |
Serôdio J, Cruz S, Cartaxana P and Calado R: Photophysiology of kleptoplasts: Photosynthetic use of light by chloroplasts living in animal cells. Philos Trans R Soc Lond B Biol Sci. 369:201302422014. View Article : Google Scholar : PubMed/NCBI | |
de Vries J, Christa G and Gould SB: Plastid survival in the cytosol of animal cells. Trends Plant Sci. 19:347–350. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pennisi E: Microbiology. Modern symbionts inside cells mimic organelle evolution. Science. 346:532–533. 2014. View Article : Google Scholar : PubMed/NCBI | |
Händeler K, Wägele H, Wahrmund U, Rüdinger M and Knoop V: Slugs' last meals: Molecular identification of sequestered chloroplasts from different algal origins in Sacoglossa (Opisthobranchia, Gastropoda). Mol Ecol Resour. 10:968–978. 2010. View Article : Google Scholar | |
Stefano GB: Conformational matching: a possible evolutionary force in the evolvement of signal systems. CRC Handbook of Comparative Opioid and Related Neuropeptide Mechanisms. Stefano GB: CRC Press Inc; Boca Raton: pp. 271–277. 1986 | |
Kerney R, Kim E, Hangarter RP, Heiss AA, Bishop CD and Hall BK: Intracellular invasion of green algae in a salamander host. Proc Natl Acad Sci USA. 108:6497–6502. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kao WC and Hunte C: The molecular evolution of the Qo motif. Genome Biol Evol. 6:1894–1910. 2014. View Article : Google Scholar : PubMed/NCBI | |
Renato M, Pateraki I, Boronat A and Azcón-Bieto J: Tomato fruit chromoplasts behave as respiratory bioenergetic organelles during ripening. Plant Physiol. 166:920–933. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bailey-Serres J and Voesenek LA: Flooding stress: Acclimations and genetic diversity. Annu Rev Plant Biol. 59:313–339. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gibbs DJ, Lee SC, Isa NM, Gramuglia S, Fukao T, Bassel GW, Correia CS, Corbineau F, Theodoulou FL, Bailey-Serres J and Holdsworth MJ: Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants. Nature. 479:415–418. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC and Mackill DJ: Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature. 442:705–708. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fukao T, Yeung E and Bailey-Serres J: The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell. 23:412–427. 2011. View Article : Google Scholar : PubMed/NCBI | |
van Dongen JT and Licausi F: Oxygen sensing and signaling. Annu Rev Plant Biol. 66:345–367. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gibbs DJ, Conde JV, Berckhan S, Prasad G, Mendiondo GM and Holdsworth MJ: Group VII ethylene response factors coordinate oxygen and nitric oxide signal transduction and stress responses in plants. Plant Physiol. 169:23–31. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kleine T and Leister D: Emerging functions of mammalian and plant mTERFs. Biochim Biophys Acta. 1847:786–797. 2015. View Article : Google Scholar : PubMed/NCBI | |
Maier UG, Zauner S, Woehle C, Bolte K, Hempel F, Allen JF and Martin WF: Massively convergent evolution for ribosomal protein gene content in plastid and mitochondrial genomes. Genome Biol Evol. 5:2318–2329. 2013. View Article : Google Scholar : PubMed/NCBI | |
Coates AR, Halls G and Hu Y: Novel classes of antibiotics or more of the same? Br J Pharmacol. 163:184–194. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kalghatgi S, Spina CS, Costello JC, Liesa M, Morones-Ramirez JR, Slomovic S, Molina A, Shirihai OS and Collins JJ: Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci Transl Med. 5:192ra852013. View Article : Google Scholar : PubMed/NCBI | |
Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, Takahashi N, Chan CT, Lobritz MA, Braff D, Schwarz EG, et al: Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci USA. 111:E2100–E2109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gray MW, Burger G and Lang BF: The origin and early evolution of mitochondria. Genome Biol. 2:reviews1018.1–reviews1018.5. 2001. View Article : Google Scholar | |
Zimorski V, Ku C, Martin WF and Gould SB: Endosymbiotic theory for organelle origins. Curr Opin Microbiol. 22:38–48. 2014. View Article : Google Scholar : PubMed/NCBI | |
Powers JH: Antimicrobial drug development - the past, the present, and the future. Clin Microbiol Infect. 10(Suppl 4): 23–31. 2004. View Article : Google Scholar | |
Prezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S, Qiu WQ, Arnos KS, Cortopassi GA, Jaber L, Rotter JI, et al: Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet. 4:289–294. 1993. View Article : Google Scholar : PubMed/NCBI | |
Desa D, Nichols MG and Jensen Smith H: The role of complex I in mitochondrial reactive oxygen species formation in cochlear sensory and supporting cells during ototoxic aminoglycoside exposure. Biophys J. 108:611a2015. View Article : Google Scholar | |
Katsi V, Katsimichas T, Kallistratos MS, Tsekoura D, Makris T, Manolis AJ, Tousoulis D, Stefanadis C and Kallikazaros I: The association of Restless Legs Syndrome with hypertension and cardiovascular disease. Med Sci Monit. 20:654–659. 2014. View Article : Google Scholar : PubMed/NCBI | |
Stefano GB and Kream RM: Nitric oxide regulation of mitochondrial processes: Commonality in medical disorders. Ann Transplant. 20:402–407. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jones CN, Miller C, Tenenbaum A, Spremulli LL and Saada A: Antibiotic effects on mitochondrial translation and in patients with mitochondrial translational defects. Mitochondrion. 9:429–437. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pacheu-Grau D, Gómez-Durán A, Iglesias E, López-Gallardo E, Montoya J and Ruiz-Pesini E: Mitochondrial antibiograms in personalized medicine. Hum Mol Genet. 22:1132–1139. 2013. View Article : Google Scholar | |
Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A, Jovaisaite V, Frochaux MV, Quiros PM, Deplancke B, et al: Tetracyclines disturb mitochondrial function across eukaryotic models: A call for caution in biomedical research. Cell Rep. 10:1681–1691. 2015. View Article : Google Scholar | |
Singh R, Sripada L and Singh R: Side effects of antibiotics during bacterial infection: Mitochondria, the main target in host cell. Mitochondrion. 16:50–54. 2014. View Article : Google Scholar | |
Stevens DL: The role of vancomycin in the treatment paradigm. Clin Infect Dis. 42(Suppl 1): S51–S57. 2006. View Article : Google Scholar | |
Arimura Y, Yano T, Hirano M, Sakamoto Y, Egashira N and Oishi R: Mitochondrial superoxide production contributes to vancomycin-induced renal tubular cell apoptosis. Free Radic Biol Med. 52:1865–1873. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dieterich C, Puey A, Lin S, Swezey R, Furimsky A, Fairchild D, Mirsalis JC and Ng HH: Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates. Toxicol Sci. 107:258–269. 2009. View Article : Google Scholar : | |
Sanchez-Alvarez R, Martinez-Outschoorn UE, Lamb R, Hulit J, Howell A, Gandara R, Sartini M, Rubin E, Lisanti MP and Sotgia F: Mitochondrial dysfunction in breast cancer cells prevents tumor growth: Understanding chemoprevention with metformin. Cell Cycle. 12:172–182. 2013. View Article : Google Scholar : | |
Lamb R, Harrison H, Hulit J, Smith DL, Lisanti MP and Sotgia F: Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget. 5:11029–11037. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lamb R, Fiorillo M, Chadwick A, Ozsvari B, Reeves KJ, Smith DL, Clarke RB, Howell SJ, Cappello AR, Martinez-Outschoorn UE, et al: Doxycycline down-regulates DNA-PK and radiosensitizes tumor initiating cells: Implications for more effective radiation therapy. Oncotarget. 6:14005–14025. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jayaprakash AD, Benson EK, Gone S, Liang R, Shim J, Lambertini L, Toloue MM, Wigler M, Aaronson SA and Sachidanandam R: Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. Nucleic Acids Res. 43:2177–2187. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A, Martinez-Outschoorn UE, Sotgia F and Lisanti MP: Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: Treating cancer like an infectious disease. Oncotarget. 6:4569–4584. 2015. View Article : Google Scholar : PubMed/NCBI | |
Leeman MF, Curran S and Murray GI: The structure, regulation, and function of human matrix metalloproteinase-13. Crit Rev Biochem Mol Biol. 37:149–166. 2002. View Article : Google Scholar : PubMed/NCBI | |
Li CH, Cheng YW, Liao PL, Yang YT and Kang JJ: Chloramphenicol causes mitochondrial stress, decreases ATP biosynthesis, induces matrix metalloproteinase-13 expression, and solid-tumor cell invasion. Toxicol Sci. 116:140–150. 2010. View Article : Google Scholar : PubMed/NCBI | |
Abouesh A, Stone C and Hobbs WR: Antimicrobial-induced mania (antibiomania): A review of spontaneous reports. J Clin Psychopharmacol. 22:71–81. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ben-Chetrit E, Rothstein N and Munter G: Ciprofloxacin-induced psychosis. Antimicrob Agents Chemother. 57:40792013. View Article : Google Scholar : PubMed/NCBI | |
Mulhall JP and Bergmann LS: Ciprofloxacin-induced acute psychosis. Urology. 46:102–103. 1995. View Article : Google Scholar : PubMed/NCBI | |
Reeves RR: Ciprofloxacin-induced psychosis. Ann Pharmacother. 26:930–931. 1992.PubMed/NCBI | |
Koul S, Bhan-Kotwal S, Jenkins HS and Carmaciu CD: Organic psychosis induced by ofloxacin and metronidazole. Br J Hosp Med (Lond). 70:236–237. 2009. View Article : Google Scholar | |
Dinca EB, Skinner A, Dinca RV and Tudose C: The dangers of gastritis: A case of clarithromycin-associated brief psychotic episode. J Nerv Ment Dis. 203:149–151. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiménez-Pulido I, Navarro-Ruiz A, Sendra P, Martínez-Ramírez M, Garcia-Motos C and Montesinos-Ros A: Hallucinations with therapeutic doses of clarithromycin. Int J Clin Pharmacol Ther. 40:20–22. 2002. View Article : Google Scholar : PubMed/NCBI | |
Korde AS and Maragos WF: Identification of an N-methyl-D-aspartate receptor in isolated nervous system mitochondria. J Biol Chem. 287:35192–35200. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schmuck G, Schürmann A and Schlüter G: Determination of the excitatory potencies of fluoroquinolones in the central nervous system by an in vitro model. Antimicrob Agents Chemother. 42:1831–1836. 1998.PubMed/NCBI | |
Accardi MV, Daniels BA, Brown PM, Fritschy JM, Tyagarajan SK and Bowie D: Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission. Nat Commun. 5:31682014. View Article : Google Scholar : PubMed/NCBI | |
Kawakami J, Yamamoto K, Asanuma A, Yanagisawa K, Sawada Y and Iga T: Inhibitory effect of new quinolones on GABA(A) receptor-mediated response and its potentiation with felbinac in Xenopus oocytes injected with mouse-brain mRNA: Correlation with convulsive potency in vivo. Toxicol Appl Pharmacol. 145:246–254. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhang HYMB, McPherson BC, Liu H, Baman TS, Rock P and Yao Z: H(2)O(2) opens mitochondrial K(ATP) channels and inhibits GABA receptors via protein kinase C-epsilon in cardio-myocytes. Am J Physiol Heart Circ Physiol. 282:H1395–H1403. 2002. View Article : Google Scholar : PubMed/NCBI | |
Grill MF and Maganti RK: Neurotoxic effects associated with antibiotic use: Management considerations. Br J Clin Pharmacol. 72:381–393. 2011. View Article : Google Scholar : PubMed/NCBI | |
Stuhec M: Trimethoprim-sulfamethoxazole-related hallucinations. Gen Hosp Psychiatry. 36:230.e237–e238. 2014. View Article : Google Scholar | |
Weis S, Karagülle D, Kornhuber J and Bayerlein K: Cotrimoxazole-induced psychosis: A case report and review of literature. Pharmacopsychiatry. 39:236–237. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee KY, Huang CH, Tang HJ, Yang CJ, Ko WC, Chen YH, Lee YC and Hung CC: Acute psychosis related to use of trimethoprim/sulfamethoxazole in the treatment of HIV-infected patients with Pneumocystis jirovecii pneumonia: A multicentre, retrospective study. J Antimicrob Chemother. 67:2749–2754. 2012. View Article : Google Scholar : PubMed/NCBI | |
Quandt-Herrera P, Suarez-Jesus J and Yelmo-Cruz S: Antibiomania: Secondary mania associated with ceftazidime. J Clin Psychopharmacol. 35:619–621. 2015. View Article : Google Scholar : PubMed/NCBI | |
Landais A, Marty N, Bessis D, Pages M and Blard JM: Hoigne syndrome following an intravenous injection of ceftriaxone: A case report. Rev Med Interne. 35:199–201. 2014.In French. View Article : Google Scholar | |
Stefano GB, Kim C, Mantione K, Casares F and Kream RM: Targeting mitochondrial biogenesis for promoting health. Med Sci Monit. 18:SC1–SC3. 2012. View Article : Google Scholar : PubMed/NCBI | |
Michel TM, Pülschen D and Thome J: The role of oxidative stress in depressive disorders. Curr Pharm Des. 18:5890–5899. 2012. View Article : Google Scholar : PubMed/NCBI | |
Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T and Fiskum G: Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: Implications for brain energy metabolism and neurotrophic signaling. J Psychiatr Res. 46:95–104. 2012. View Article : Google Scholar | |
Tobe EH: Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatr Dis Treat. 9:567–573. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hovatta I, Juhila J and Donner J: Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 68:261–275. 2010. View Article : Google Scholar : PubMed/NCBI | |
Andreazza AC: Combining redox-proteomics and epigenomics to explain the involvement of oxidative stress in psychiatric disorders. Mol Biosyst. 8:2503–2512. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gigante AD, Andreazza AC, Lafer B, Yatham LN, Beasley CL and Young LT: Decreased mRNA expression of uncoupling protein 2, a mitochondrial proton transporter, in post-mortem prefrontal cortex from patients with bipolar disorder and schizophrenia. Neurosci Lett. 505:47–51. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rossignol DA and Frye RE: A review of research trends in physiological abnormalities in autism spectrum disorders: Immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry. 17:389–401. 2012. View Article : Google Scholar : | |
Mehta SL, Kumari S, Mendelev N and Li PA: Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neurosci. 13:792012. View Article : Google Scholar : PubMed/NCBI | |
Badjatia N, Seres D, Carpenter A, Schmidt JM, Lee K, Mayer SA, Claassen J, Connolly ES and Elkind MS: Free fatty acids and delayed cerebral ischemia after subarachnoid hemorrhage. Stroke. 43:691–696. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Jing CH, Liu PP, Ruan D and Wang L: Induction of autophagic cell death in the rat brain caused by iron. Am J Med Sci. 345:369–374. 2013. View Article : Google Scholar | |
McCracken E, Valeriani V, Simpson C, Jover T, McCulloch J and Dewar D: The lipid peroxidation by-product 4-hydroxynonenal is toxic to axons and oligodendrocytes. J Cereb Blood Flow Metab. 20:1529–1536. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Holmes EH, Greene TG and Liu PK: Oxidative DNA damage precedes DNA fragmentation after experimental stroke in rat brain. FASEB J. 14:955–967. 2000.PubMed/NCBI | |
Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT and Rosenfeld J: Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol. 292:C708–C718. 2007. View Article : Google Scholar | |
Hansson MJ, Månsson R, Morota S, Uchino H, Kallur T, Sumi T, Ishii N, Shimazu M, Keep MF, Jegorov A and Elmér E: Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radic Biol Med. 45:284–294. 2008. View Article : Google Scholar : PubMed/NCBI | |
Opii WO, Nukala VN, Sultana R, Pandya JD, Day KM, Merchant ML, Klein JB, Sullivan PG and Butterfield DA: Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. J Neurotrauma. 24:772–789. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lemasters JJ, Theruvath TP, Zhong Z and Nieminen AL: Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta. 1787:1395–1401. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rasola A, Sciacovelli M, Pantic B and Bernardi P: Signal transduction to the permeability transition pore. FEBS Lett. 584:1989–1996. 2010. View Article : Google Scholar : PubMed/NCBI | |
Esch T, Stefano GB, Fricchione GL and Benson H: The role of stress in neurodegenerative diseases and mental disorders. Neuro Endocrinol Lett. 23:199–208. 2002.PubMed/NCBI | |
Halliwell B: Oxidative stress and neurodegeneration: Where are we now? J Neurochem. 97:1634–1658. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tsaluchidu S, Cocchi M, Tonello L and Puri BK: Fatty acids and oxidative stress in psychiatric disorders. BMC Psychiatry. 8(Suppl 1): S52008. View Article : Google Scholar : PubMed/NCBI | |
Masood A, Nadeem A, Mustafa SJ and O'Donnell JM: Reversal of oxidative stress-induced anxiety by inhibition of phosphodi-esterase-2 in mice. J Pharmacol Exp Ther. 326:369–379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Arranz MJ and de Leon J: Pharmacogenetics and pharmacoge-nomics of schizophrenia: A review of last decade of research. Mol Psychiatry. 12:707–747. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bouayed J, Rammal H, Younos C and Soulimani R: Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur J Pharmacol. 564:146–149. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bouayed J, Rammal H and Soulimani R: Oxidative stress and anxiety: Relationship and cellular pathways. Oxid Med Cell Longev. 2:63–67. 2009. View Article : Google Scholar : | |
Marazziti D, Baroni S, Picchetti M, Landi P, Silvestri S, Vatteroni E and Catena Dell'Osso M: Psychiatric disorders and mitochondrial dysfunctions. Eur Rev Med Pharmacol Sci. 16:270–275. 2012.PubMed/NCBI | |
Ng F, Berk M, Dean O and Bush AI: Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int J Neuropsychopharmacol. 11:851–876. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kunz M, Gama CS, Andreazza AC, Salvador M, Ceresér KM, Gomes FA, Belmonte-de-Abreu PS, Berk M and Kapczinski F: Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in different phases of bipolar disorder and in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 32:167–1681. 2008. View Article : Google Scholar | |
Wass CE and Andreazza A: The Redox Brain and Nitric Oxide: Implications for Psychiatric Illness. J Pharmacol Clin Toxicol. 1:1008–1009. 2013. | |
Gubert C, Stertz L, Pfaffenseller B, Panizzutti BS, Rezin GT, Massuda R, Streck EL, Gama CS, Kapczinski F and Kunz M: Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J Psychiatr Res. 47:1396–1402. 2013. View Article : Google Scholar : PubMed/NCBI | |
Emiliani FE, Sedlak TW and Sawa A: Oxidative stress and schizophrenia: recent breakthroughs from an old story. 27:185–190. 2014. | |
Andreazza AC, Kauer-Sant'anna M, Frey BN, Bond DJ, Kapczinski F, Young LT and Yatham LN: Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord. 111:135–144. 2008. View Article : Google Scholar : PubMed/NCBI | |
Scola G, Kim HK, Young LT and Andreazza AC: A fresh look at complex I in microarray data: Clues to understanding disease-specific mitochondrial alterations in bipolar disorder. Biol Psychiatry. 73:e4–e5. 2013. View Article : Google Scholar | |
Boess FG, Hendrix M, van der Staay FJ, Erb C, Schreiber R, van Staveren W, de Vente J, Prickaerts J, Blokland A and Koenig G: Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology. 47:1081–1092. 2004. View Article : Google Scholar : PubMed/NCBI | |
Werner C, Raivich G, Cowen M, Strekalova T, Sillaber I, Buters JT, Spanagel R and Hofmann F: Importance of NO/cGMP signalling via cGMP-dependent protein kinase II for controlling emotionality and neurobehavioural effects of alcohol. Eur J Neurosci. 20:3498–3506. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Pinto-Duarte A, Sejnowski TJ and Behrens MM: How Nox2-containing NADPH oxidase affects cortical circuits in the NMDA receptor antagonist model of schizophrenia. Antioxid Redox Signal. 18:1444–1462. 2013. View Article : Google Scholar : | |
Gu F, Chauhan V, Kaur K, Brown WT, LaFauci G, Wegiel J and Chauhan A: Alterations in mitochondrial DNA copy number and the activities of electron transport chain complexes and pyruvate dehydrogenase in the frontal cortex from subjects with autism. Transl Psychiatry. 3:e2992013. View Article : Google Scholar : PubMed/NCBI | |
Ptacek R, Stefano GB, Weissenberger S, et al: ADHD and eating disorders: risks and co-Morbidities. J Neuropsychiatric Dis Treat. In press. | |
Ming X, Brimacombe M, Malek JH, Jani N and Wagner GC: Autism spectrum disorders and identified toxic land fills: Co-occurrence across States. Environ Health Insights. 2:55–59. 2008.PubMed/NCBI | |
Frye RE, Delatorre R, Taylor H, Slattery J, Melnyk S, Chowdhury N and James SJ: Redox metabolism abnormalities in autistic children associated with mitochondrial disease. Transl Psychiatry. 3:e2732013. View Article : Google Scholar : PubMed/NCBI | |
Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE and James SJ: Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry. 2:e1342012. View Article : Google Scholar : PubMed/NCBI | |
Kulak A, Steullet P, Cabungcal JH, Werge T, Ingason A, Cuenod M and Do KQ: Redox dysregulation in the pathophysiology of schizophrenia and bipolar disorder: Insights from animal models. Antioxid Redox Signal. 18:1428–1443. 2013. View Article : Google Scholar | |
Kream RM and Stefano GB: De novo biosynthesis of morphine in animal cells: An evidence-based model. Med Sci Monit. 12:RA207–RA219. 2006.PubMed/NCBI | |
Kream RM, Sheehan M, Cadet P, Mantione KJ, Zhu W, Casares F and Stefano GB: Persistence of evolutionary memory: Primordial six-transmembrane helical domain mu opiate receptors selectively linked to endogenous morphine signaling. Med Sci Monit. 13:SC5–SC6. 2007.PubMed/NCBI | |
Stefano GB, Mantione KJ, Capellan L, Casares FM, Challenger S, Ramin R, Samuel JM, Snyder C and Kream RM: Morphine stimulates nitric oxide release in human mitochondria. J Bioenerg Biomembr. 47:409–417. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kream RM, Stefano GB and Rtacek R: Psychiatric implications of endogenous morphine: up-to-date review. Folia Biol (Praha). 56:231–241. 2010. | |
Kream RM, Mantione KJ, Sheehan M and Stefano GB: Morphine's chemical messenger status in animals. Activitas Nerv Super Rediviva. 51:153–161. 2009. | |
Mantione KJ, Cadet P, Zhu W, Kream RM, Sheehan M, Fricchione GL, Goumon Y, Esch T and Stefano GB: Endogenous morphine signaling via nitric oxide regulates the expression of CYP2D6 and COMT: Autocrine/paracrine feedback inhibition. Addict Biol. 13:118–123. 2008. View Article : Google Scholar | |
Stefano GB, Cadet P, Kream RM and Zhu W: The presence of endogenous morphine signaling in animals. Neurochem Res. 33:1933–1939. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stefano GB, Ptacek R, Kuzelova H and Kream RM: Endogenous morphine: Up-to-date review 2011. Folia Biologica. J Cell Mol Biol. 58:49–56. 2012. | |
Stefano GB and Scharrer B: Endogenous morphine and related opiates, a new class of chemical messengers. Adv Neuroimmunol. 4:57–67. 1994. View Article : Google Scholar : PubMed/NCBI | |
Stefano GB: The evolvement of signal systems: Conformational matching a determining force stabilizing families of signal molecules. Comp Biochem Physiol C. 90:287–294. 1988. View Article : Google Scholar : PubMed/NCBI | |
Stefano GB: Stereospecificity as a determining force stabilizing families of signal molecules within the context of evolution. Comparative Aspects of Neuropeptide Function. Stefano GB and Florey E: University of Manchester Press; Manchester: pp. 14–28. 1991 | |
Otten AB and Smeets HJ: Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing. Hum Reprod Update. 21:671–689. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hedges SB, Chen H, Kumar S, Wang DY, Thompson AS and Watanabe H: A genomic timescale for the origin of eukaryotes. BMC Evol Biol. 1:42001. View Article : Google Scholar : PubMed/NCBI | |
Xavier JM, Rodrigues CM and Solá S: Mitochondria: Major Regulators of Neural Development. Neuroscientist. May 6–2015.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Dinan TG, Stilling RM, Stanton C and Cryan JF: Collective unconscious: How gut microbes shape human behavior. J Psychiatr Res. 63:1–9. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wood JP: Communication between the minibrain in gut and enteric immune system. News Physiol Sci (NIPS). 6:64–69. 1991. | |
Snyder C, Kream RM, Ptacek R and Stefano GB: Mitochondria, microbiome and their potential psychiatric modulation. Autism Open Access. In press. | |
Lackner JM, Ma CX, Keefer L, Brenner DM, Gudleski GD, Satchidanand N, Firth R, Sitrin MD, Katz L, Krasner SS, et al: Type, rather than number, of mental and physical comorbidities increases the severity of symptoms in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 11:1147–1157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guinane CM and Cotter PD: Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Therap Adv Gastroenterol. 6:295–308. 2013. View Article : Google Scholar : PubMed/NCBI | |
Peterson CT, Sharma V, Elmén L and Peterson SN: Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 179:363–377. 2015. View Article : Google Scholar | |
Stefano GB, Bilfinger TV and Fricchione GL: The immune-neuro-link and the macrophage: Postcardiotomy delirium, HIV-associated dementia and psychiatry. Prog Neurobiol. 42:475–488. 1994. View Article : Google Scholar : PubMed/NCBI |