1
|
Anstee QM, McPherson S and Day CP: How big
a problem is non-alcoholic fatty liver disease? BMJ. 343:d38972011.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zámbó V, Simon-Szabó L, Szelényi P,
Kereszturi E, Bánhegyi G and Csala M: Lipotoxicity in the liver.
World J Hepatol. 5:550–557. 2013.PubMed/NCBI
|
3
|
Crescenzo R, Bianco F, Falcone I, Coppola
P, Liverini G and Iossa S: Increased hepatic de novo lipogenesis
and mitochondrial efficiency in a model of obesity induced by diets
rich in fructose. Eur J Nutr. 52:537–545. 2013. View Article : Google Scholar
|
4
|
Begriche K, Igoudjil A, Pessayre D and
Fromenty B: Mitochondrial dysfunction in NASH: causes, consequences
and possible means to prevent it. Mitochondrion. 6:1–28. 2006.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Serviddio G, Bellanti F, Vendemiale G and
Altomare E: Mitochondrial dysfunction in nonalcoholic
steatohepatitis. Expert Rev Gastroenterol Hepatol. 5:233–244. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Mantena SK, King AL, Andringa KK,
Eccleston HB and Bailey SM: Mitochondrial dysfunction and oxidative
stress in the pathogenesis of alcohol- and obesity-induced fatty
liver diseases. Free Radic Biol Med. 44:1259–1272. 2008. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mantena SK, Vaughn DP, Andringa KK,
Eccleston HB, King AL, Abrams GA, Doeller JE, Kraus DW,
Darley-Usmar VM and Bailey SM: High fat diet induces dysregulation
of hepatic oxygen gradients and mitochondrial function in vivo.
Biochem J. 417:183–193. 2009. View Article : Google Scholar :
|
8
|
Rector RS, Thyfault JP, Uptergrove GM,
Morris EM, Naples SP, Borengasser SJ, Mikus CR, Laye MJ, Laughlin
MH, Booth FW and Ibdah JA: Mitochondrial dysfunction precedes
insulin resistance and hepatic steatosis and contributes to the
natural history of non-alcoholic fatty liver disease in an obese
rodent model. J Hepatol. 52:727–736. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Marí M, Colell A, Morales A, von Montfort
C, Garcia-Ruiz C and Fernández-Checa JC: Redox control of liver
function in health and disease. Antioxid Redox Signal.
12:1295–1331. 2010. View Article : Google Scholar :
|
10
|
Pessayre D and Fromenty B: NASH: a
mitochondrial disease. J Hepatol. 42:928–940. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sandri M: FOXOphagy path to inducing
stress resistance and cell survival. Nat Cell Biol. 14:786–788.
2012. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Nakae J, Kitamura T, Silver DL and Accili
D: The forkhead transcription factor Foxo1 (Fkhr) confers insulin
sensitivity onto glucose-6-phosphatase expression. J Clin Invest.
108:1359–1367. 2001. View Article : Google Scholar : PubMed/NCBI
|
13
|
Samuel VT, Choi CS, Phillips TG, Romanelli
AJ, Geisler JG, Bhanot S, McKay R, Monia B, Shutter JR, Lindberg
RA, et al: Targeting foxo1 in mice using antisense oligonucleotide
improves hepatic and peripheral insulin action. Diabetes.
55:2042–2050. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Matsumoto M, Han S, Kitamura T and Accili
D: Dual role of transcription factor FoxO1 in controlling hepatic
insulin sensitivity and lipid metabolism. J Clin Invest.
116:2464–2472. 2006.PubMed/NCBI
|
15
|
Nakae J, Cao Y, Oki M, Orba Y, Sawa H,
Kiyonari H, Iskandar K, Suga K, Lombes M and Hayashi Y: Forkhead
transcription factor FoxO1 in adipose tissue regulates energy
storage and expenditure. Diabetes. 57:563–576. 2008. View Article : Google Scholar
|
16
|
Kim JJ, Li P, Huntley J, Chang JP, Arden
KC and Olefsky JM: FoxO1 haploinsufficiency protects against
high-fat diet-induced insulin resistance with enhanced peroxisome
proliferator-activated receptor gamma activation in adipose tissue.
Diabetes. 58:1275–1282. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Caro JF, Dohm LG, Pories WJ and Sinha MK:
Cellular alterations in liver, skeletal muscle, and adipose tissue
responsible for insulin resistance in obesity and type II diabetes.
Diabetes Metab Rev. 5:665–689. 1989. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wajngot A, Chandramouli V, Schumann WC,
Ekberg K, Jones PK, Efendic S and Landau BR: Quantitative
contributions of gluconeogenesis to glucose production during
fasting in type 2 diabetes mellitus. Metabolism. 50:47–52. 2001.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Altomonte J, Richter A, Harbaran S,
Suriawinata J, Nakae J, Thung SN, Meseck M, Accili D and Dong H:
Inhibition of Foxo1 function is associated with improved fasting
glycemia in diabetic mice. Am J Physiol Endocrinol Metab.
285:E718–E728. 2003. View Article : Google Scholar : PubMed/NCBI
|
20
|
Haeusler RA, Han S and Accili D: Hepatic
FoxO1 ablation exacerbates lipid abnormalities during
hyperglycemia. J Biol Chem. 285:26861–26868. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Cheng Z, Guo S, Copps K, Dong X, Kollipara
R, Rodgers JT, Depinho RA, Puigserver P and White MF: Foxo1
integrates insulin signaling with mitochondrial function in the
liver. Nat Med. 15:1307–1311. 2009. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Howlett AC, Barth F, Bonner TI, Cabral G,
Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR,
et al: International Union of Pharmacology. XXVII. Classification
of cannabinoid receptors. Pharmacol Rev. 54:161–202. 2002.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Osei-Hyiaman D, DePetrillo M, Pacher P,
Liu J, Radaeva S, Bátkai S, Harvey-White J, Mackie K, Offertáler L,
Wang L and Kunos G: Endocannabinoid activation at hepatic CB1
receptors stimulates fatty acid synthesis and contributes to
diet-induced obesity. J Clin Invest. 115:1298–1305. 2005.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Osei-Hyiaman D, Liu J, Zhou L, Godlewski
G, Harvey-White J, Jeong WI, Bátkai S, Marsicano G, Lutz B,
Buettner C and Kunos G: Hepatic CB1 receptor is required for
development of diet-induced steatosis, dyslipidemia, and insulin
and leptin resistance in mice. J Clin Invest. 118:3160–3169. 2008.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Cinar R, Godlewski G, Liu J, Tam J,
Jourdan T, Mukhopadhyay B, Harvey-White J and Kunos G: Hepatic
cannabinoid-1 receptors mediate diet-induced insulin resistance by
increasing de novo synthesis of long-chain ceramides. Hepatology.
59:143–153. 2014. View Article : Google Scholar
|
26
|
Chanda D, Kim YH, Kim DK, Lee MW, Lee SY,
Park TS, Koo SH, Lee CH and Choi HS: Activation of cannabinoid
receptor type 1 (Cb1r) disrupts hepatic insulin receptor signaling
via cyclic AMP-response element-binding protein H (Crebh)-mediated
induction of Lipin1 gene. J Biol Chem. 287:38041–38049. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu J, Zhou L, Xiong K, Godlewski G,
Mukhopadhyay B, Tam J, Yin S, Gao P, Shan X, Pickel J, et al:
Hepatic cannabinoid receptor-1 mediates diet-induced insulin
resistance via inhibition of insulin signaling and clearance in
mice. Gastroenterology. 142:1218–1228.e1. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tam J, Vemuri VK, Liu J, Bátkai S,
Mukhopadhyay B, Godlewski G, Osei-Hyiaman D, Ohnuma S, Ambudkar SV,
Pickel J, et al: Peripheral CB1 cannabinoid receptor blockade
improves cardiometabolic risk in mouse models of obesity. J Clin
Invest. 120:2953–2966. 2010. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Tam J, Cinar R, Liu J, Godlewski G, Wesley
D, Jourdan T, Szanda G, Mukhopadhyay B, Chedester L, Liow JS, et
al: Peripheral cannabinoid-1 receptor inverse agonism reduces
obesity by reversing leptin resistance. Cell Metab. 16:167–179.
2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tedesco L, Valerio A, Dossena M, Cardile
A, Ragni M, Pagano C, Pagotto U, Carruba MO, Vettor R and Nisoli E:
Cannabinoid receptor stimulation impairs mitochondrial biogenesis
in mouse white adipose tissue, muscle, and liver: The role of eNOS,
p38 MAPK, and AMPK pathways. Diabetes. 59:2826–2836. 2010.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Kohli R, Pan X, Malladi P, Wainwright MS
and Whitington PF: Mitochondrial reactive oxygen species signal
hepatocyte steatosis by regulating the phosphatidylinositol
3-kinase cell survival pathway. J Biol Chem. 282:21327–21336. 2007.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Tedesco L, Valerio A, Cervino C, Cardile
A, Pagano C, Vettor R, Pasquali R, Carruba MO, Marsicano G, Lutz B,
et al: Cannabinoid type 1 receptor blockade promotes mitochondrial
biogenesis through endothelial nitric oxide synthase expression in
white adipocytes. Diabetes. 57:2028–2036. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen CC, Lee TY, Kwok CF, Hsu YP, Shih KC,
Lin YJ and Ho LT: Major urinary protein 1 interacts with
cannabinoid receptor type 1 in fatty acid-induced hepatic insulin
resistance in a mouse hepatocyte model. Biochem Biophys Res Commun.
15:1063–1068. 2015. View Article : Google Scholar
|
34
|
Yabaluri N and Bashyam MD: Hormonal
regulation of gluconeogenic gene transcription in the liver. J
Biosci. 35:473–484. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Medina-Santillán R, López-Velázquez JA,
Chávez-Tapia N, Torres-Villalobos G, Uribe M and Méndez-Sánchez N:
Hepatic manifestations of metabolic syndrome. Diabetes Metab Res
Rev. Mar 7–2013.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lottenberg AM, Afonso MS, Lavrador MS,
Machado RM and Nakandakare ER: The role of dietary fatty acids in
the pathology of metabolic syndrome. J Nutr Biochem. 23:1027–1040.
2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Utzschneider KM and Kahn SE: Review: The
role of insulin resistance in nonalcoholic fatty liver disease. J
Clin Endocrinol Metab. 91:4753–4761. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gao CL, Zhu C, Zhao YP, Chen XH, Ji CB,
Zhang CM, Zhu JG, Xia ZK, Tong ML and Guo XR: Mitochondrial
dysfunction is induced by high levels of glucose and free fatty
acids in 3T3-L1 adipocytes. Mol Cell Endocrinol. 320:25–33. 2010.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Chanda D, Kim DK, Li T, Kim YH, Koo SH,
Lee CH, Chiang JY and Choi HS: Cannabinoid receptor type 1 (CB1R)
signaling regulates hepatic gluconeogenesis via induction of
endoplasmic reticulum-bound transcription factor cAMP-responsive
element-binding protein H (CREBH) in primary hepatocytes. J Biol
Chem. 286:27971–27979. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ruby MA, Nomura DK, Hudak CS, Barber A,
Casida JE and Krauss RM: Acute overactive endocannabinoid signaling
induces glucose intolerance, hepatic steatosis, and novel
cannabinoid receptor 1 responsive genes. PLoS One. 6:e264152011.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Merroun I, Sánchez-González C, Martínez R,
López-Chaves C, Porres JM, Aranda P, Llopis J, Galisteo M, Zarzuelo
A, Errami M and López-Jurado M: Novel effects of the cannabinoid
inverse agonist AM 251 on parameters related to metabolic syndrome
in obese Zucker rats. Metabolism. 62:1641–1650. 2013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Jourdan T, Demizieux L, Gresti J, Djaouti
L, Gaba L, Vergès B and Degrace P: Antagonism of peripheral hepatic
cannabinoid receptor-1 improves liver lipid metabolism in mice:
Evidence from cultured explants. Hepatology. 55:790–799. 2012.
View Article : Google Scholar
|
43
|
Poli G and Schaur RJ: 4-Hydroxynonenal in
the pathomechanisms of oxidative stress. IUBMB Life. 50:315–321.
2000. View Article : Google Scholar
|
44
|
Pérez-Carreras M, Del Hoyo P, Martín MA,
Rubio JC, Martín A, Castellano G, Colina F, Arenas J and
Solis-Herruzo JA: Defective hepatic mitochondrial respiratory chain
in patients with nonalcoholic steatohepatitis. Hepatology.
38:999–1007. 2003. View Article : Google Scholar : PubMed/NCBI
|
45
|
Violi F and Cangemi R: Pioglitazone,
vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J
Med. 363:1185–1186; author reply 1186. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lavine JE, Schwimmer JB, Van Natta ML,
Molleston JP, Murray KF, Rosenthal P, Abrams SH, Scheimann AO,
Sanyal AJ, Chalasani N, et al: Nonalcoholic Steatohepatitis
Clinical Research Network: Effect of vitamin E or metformin for
treatment of nonalcoholic fatty liver disease in children and
adolescents: the TONIC randomized controlled trial. JAMA.
305:1659–1668. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Aharoni-Simon M, Hann-Obercyger M, Pen S,
Madar Z and Tirosh O: Fatty liver is associated with impaired
activity of PPARγ-coactivator 1α (PGC1α) and mitochondrial
biogenesis in mice. Lab Invest. 91:1018–1028. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wang S, Kamat A, Pergola P, Swamy A, Tio F
and Cusi K: Metabolic factors in the development of hepatic
steatosis and altered mitochondrial gene expression in vivo.
Metabolism. 60:1090–1099. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
St-Pierre J, Drori S, Uldry M, Silvaggi
JM, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, et al:
Suppression of reactive oxygen species and neurodegeneration by the
PGC-1 transcriptional coactivators. Cell. 127:397–408. 2006.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Tsvetanova E, Kessiova M, Alexandrova A,
Petrov L, Kirkova M and Todorov S: In vivo effects of CB1 receptor
ligands on lipid peroxidation and antioxidant defense systems in
the rat brain of healthy and ethanol-treated rats. Pharmacol Rep.
58:876–883. 2006.
|
51
|
Klover PJ and Mooney RA: Hepatocytes:
critical for glucose homeostasis. Int J Biochem Cell Biol.
36:753–758. 2004. View Article : Google Scholar : PubMed/NCBI
|
52
|
Garber AJ: Obesity and type 2 diabetes:
which patients are at risk? Diabetes Obes Metab. 14:399–408. 2012.
View Article : Google Scholar
|
53
|
Mukhopadhyay B, Schuebel K, Mukhopadhyay
P, Cinar R, Godlewski G, Xiong K, Mackie K, Lizak M, Yuan Q,
Goldman D and Kunos G: Cannabinoid receptor 1 promotes
hepatocellular carcinoma initiation and progression through
multiple mechanisms. Hepatology. 61:1615–1626. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Sesti G, Fiorentino TV, Hribal ML,
Sciacqua A and Perticone F: Association of hepatic insulin
resistance indexes to nonalcoholic fatty liver disease and related
biomarkers. Nutr Metab Cardiovasc Dis. 23:1182–1187. 2013.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Christensen R, Kristensen PK, Bartels EM,
Bliddal H and Astrup A: Efficacy and safety of the weight-loss drug
rimonabant: a meta-analysis of randomised trials. Lancet.
370:1706–1713. 2007. View Article : Google Scholar : PubMed/NCBI
|
56
|
Chang CP, Wu CH, Song JS, Chou MC, Wong
YC, Lin Y, Yeh TK, Sadani AA, Ou MH, Chen KH, et al: Discovery of
1-(2,4-dichlorophenyl)-N-(piperidin-1-yl)-4-((pyrrolidine-1-sulfonamido)
methyl)-5-(5-((4-(trifluoromethyl)phenyl)ethynyl)thiophene-2-yl)-1H-pyrazole-3-carboxamide
as a novel peripherally restricted cannabinoid-1 receptor
antagonist with significant weight-loss efficacy in diet-induced
obese mice. J Med Chem. 56:9920–9933. 2013. View Article : Google Scholar : PubMed/NCBI
|