Apelin/APJ system: A novel therapeutic target for oxidative stress-related inflammatory diseases (Review)
- Authors:
- Qun Zhou
- Jiangang Cao
- Linxi Chen
-
Affiliations: Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, Hunan 421001, P.R. China - Published online on: April 1, 2016 https://doi.org/10.3892/ijmm.2016.2544
- Pages: 1159-1169
This article is mentioned in:
Abstract
O'Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR and Nguyen T: A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene. 136:355–360. 1993. View Article : Google Scholar : PubMed/NCBI | |
Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, et al: Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun. 251:471–476. 1998. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Lv D and Chen L: ELABELA: A novel hormone in cardiac development acting as a new endogenous ligand for the APJ receptor. Acta Biochim Biophys Sin (Shanghai). 46:620–622. 2014. View Article : Google Scholar | |
Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR and O'Dowd BF: Characterization of apelin, the ligand for the APJ receptor. J Neurochem. 74:34–41. 2000. View Article : Google Scholar : PubMed/NCBI | |
Saavedra JM, Correa FM, Seltzer A, Pinto JE, Viglione P and Tsutsumi K: Enhanced angiotensin converting enzyme binding in arteries from spontaneously hypertensive rats. J Hypertens. 10:1353–1359. 1992. View Article : Google Scholar : PubMed/NCBI | |
Choe W, Albright A, Sulcove J, Jaffer S, Hesselgesser J, Lavi E, Crino P and Kolson DL: Functional expression of the seven-transmembrane HIV-1 co-receptor APJ in neural cells. J Neurovirol. 6(Suppl 1): S61–S69. 2000.PubMed/NCBI | |
Habata Y, Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Hinuma S, Kitada C, Nishizawa N, Murosaki S, Kurokawa T, et al: Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta. 1452:25–35. 1999. View Article : Google Scholar : PubMed/NCBI | |
Pope GR, Roberts EM, Lolait SJ and O'Carroll AM: Central and peripheral apelin receptor distribution in the mouse: species differences with rat. Peptides. 33:139–148. 2012. View Article : Google Scholar : | |
Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C, Winborn KY, Lawrie KW, Hervieu G, Riley G, Bolaky JE, et al: Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem. 84:1162–1172. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, et al: Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem. 279:26274–26279. 2004. View Article : Google Scholar : PubMed/NCBI | |
Szokodi I, Tavi P, Földes G, Voutilainen-Myllylä S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysä J, Tóth M and Ruskoaho H: Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res. 91:434–440. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Anini Y, Wei W, Qi X, OCarroll AM, Mochizuki T, Wang HQ, Hellmich MR, Englander EW and Greeley GH Jr: Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology. 145:1342–1348. 2004. View Article : Google Scholar | |
Castan-Laurell I, Dray C, Attane C, Duparc T, Knauf C and Valet P: Apelin, diabetes, and obesity. Endocrine. 40:1–9. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lv D, Li L, Lu Q, Li Y, Xie F, Li H, Cao J, Liu M, Wu D, He L and Chen LX: PAK1-cofilin phosphorylation mediates human lung adenocarcinoma cells migration induced by apelin-13. Clin Exp Pharmacol Physiol. In Press. | |
Tiani C, Garcia-Pras E, Mejias M, de Gottardi A, Berzigotti A, Bosch J and Fernandez M: Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol. 50:296–305. 2009. View Article : Google Scholar | |
Adam F, Khatib AM, Lopez JJ, Vatier C, Turpin S, Muscat A, Soulet F, Aries A, Jardin I, Bobe R, et al: Apelin: an antithrombotic factor that inhibits platelet function. Blood. 127:908–920. 2016. View Article : Google Scholar | |
Than A, Zhang X, Leow MK, Poh CL, Chong SK and Chen P: Apelin attenuates oxidative stress in human adipocytes. J Biol Chem. 289:3763–3774. 2014. View Article : Google Scholar : | |
Foussal C, Lairez O, Calise D, Pathak A, Guilbeau-Frugier C, Valet P, Parini A and Kunduzova O: Activation of catalase by apelin prevents oxidative stress-linked cardiac hypertrophy. FEBS Lett. 584:2363–2370. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li L, Li F, Li F, Mao X, Yang L, Huang H, Guo Y, Chen L and Li J: NOX4-derived reactive oxygen species drive apelin-13-induced vascular smooth muscle cell proliferation via the ERK pathway. Int J Pept Res Ther. 17:307–315. 2011. View Article : Google Scholar | |
Katugampola SD, Maguire JJ, Matthewson SR and Davenport AP: [(125)I]-(Pyr(1))Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol. 132:1255–1260. 2001. View Article : Google Scholar : PubMed/NCBI | |
De Falco M, De Luca L, Onori N, Cavallotti I, Artigiano F, Esposito V, De Luca B, Laforgia V, Groeger AM and De Luca A: Apelin expression in normal human tissues. In Vivo. 16:333–336. 2002.PubMed/NCBI | |
Kleinz MJ and Davenport AP: Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept. 118:119–125. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li F, Li L, Qin X, Pan W, Feng F, Chen F, Zhu B, Liao D, Tanowitz H, Albanese C and Chen L: Apelin-induced vascular smooth muscle cell proliferation: the regulation of cyclin D1. Front Biosci. 13:3786–3792. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Su T, Li F, Li L, Qin X, Pan W, Feng F, Chen F, Liao D and Chen L: PI3K/Akt signaling transduction pathway is involved in rat vascular smooth muscle cell proliferation induced by apelin-13. Acta Biochim Biophys Sin (Shanghai). 42:396–402. 2010. View Article : Google Scholar | |
Mao XH, Tao S, Zhang XHui, Li F, Qin XP, Liao DF, Li LF and Chen LX: Apelin-13 promotes monocyte adhesion to human umbilical vein endothelial cell mediated by phosphatidylinositol 3-kinase signaling pathway. Prog Biochem Biophys. 38:1162–1170. 2011. View Article : Google Scholar | |
Lu Y, Zhu X, Liang GX, Cui RR, Liu Y, Wu SS, Liang QH, Liu GY, Jiang Y, Liao XB, et al: Apelin-APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-κB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acids. 43:2125–2136. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lassègue B and Clempus RE: Vascular NAD(P)H oxidases: Specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 285:R277–R297. 2003. View Article : Google Scholar : PubMed/NCBI | |
Potdar S and Kavdia M: NO/peroxynitrite dynamics of high glucose-exposed HUVECs: Chemiluminescent measurement and computational model. Microvasc Res. 78:191–198. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cohen RA and Tong X: Vascular oxidative stress: The common link in hypertensive and diabetic vascular disease. J Cardiovasc Pharmacol. 55:308–316. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liang JH, Li YN, Qi JS and Jia XX: Peroxynitrite-induced protein nitration is responsible for renal mitochondrial damage in diabetic rat. J Endocrinol Invest. 33:140–146. 2010. View Article : Google Scholar | |
Li L, Li L, Xie F, Zhang Z, Guo Y, Tang G, Lv D, Lu Q, Chen L and Li J: Jagged-1/Notch3 signaling transduction pathway is involved in apelin-13-induced vascular smooth muscle cells proliferation. Acta Biochim Biophys Sin (Shanghai). 45:875–881. 2013. View Article : Google Scholar | |
Hashimoto T, Kihara M, Imai N, Yoshida S, Shimoyamada H, Yasuzaki H, Ishida J, Toya Y, Kiuchi Y, Hirawa N, et al: Requirement of apelin-apelin receptor system for oxidative stress-linked atherosclerosis. Am J Pathol. 171:1705–1712. 2007. View Article : Google Scholar : PubMed/NCBI | |
Leeper NJ, Tedesco MM, Kojima Y, Schultz GM, Kundu RK, Ashley EA, Tsao PS, Dalman RL and Quertermous T: Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation. Am J Physiol Heart Circ Physiol. 296:H1329–H1335. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lv D, Li H and Chen L: Apelin and APJ, a novel critical factor and therapeutic target for atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 45:527–533. 2013. View Article : Google Scholar | |
Lee DK, Saldivia VR, Nguyen T, Cheng R, George SR and O'Dowd BF: Modification of the terminal residue of apelin-13 antagonizes its hypotensive action. Endocrinology. 146:231–236. 2005. View Article : Google Scholar | |
Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K and Fujimiya M: The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept. 99:87–92. 2001. View Article : Google Scholar : PubMed/NCBI | |
Japp AG, Cruden NL, Barnes G, van Gemeren N, Mathews J, Adamson J, Johnston NR, Denvir MA, Megson IL, Flapan AD and Newby DE: Acute cardiovascular effects of apelin in humans: Potential role in patients with chronic heart failure. Circulation. 121:1818–1827. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dikalova AE, Góngora MC, Harrison DG, Lambeth JD, Dikalov S and Griendling KK: Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol. 299:H673–H679. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ghiadoni L, Taddei S and Virdis A: Hypertension and endothelial dysfunction: Therapeutic approach. Curr Vasc Pharmacol. 10:42–60. 2012. View Article : Google Scholar | |
Siddiquee K, Hampton J, Khan S, Zadory D, Gleaves L, Vaughan DE and Smith LH: Apelin protects against angiotensin II-induced cardiovascular fibrosis and decreases plasminogen activator inhibitor type-1 production. J Hypertens. 29:724–731. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Iida S, Yoshikawa A, Senbonmatsu R, Imanaka K, Maruyama K, Nishimura S, Inagami T and Senbonmatsu T: Non-activated APJ suppresses the angiotensin II type 1 receptor, whereas apelin-activated APJ acts conversely. Hypertens Res. 34:701–706. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ryu S, Ornoy A, Samuni A, Zangen S and Kohen R: Oxidative stress in Cohen diabetic rat model by high-sucrose, low-copper diet: Inducing pancreatic damage and diabetes. Metabolism. 57:1253–1261. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kitada M, Kume S, Imaizumi N and Koya D: Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes. 60:634–643. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lee SH, Nam BY, Kang EW, Han SH, Li JJ, Kim H, Kim SH, Kwak SJ, Park JT, Chang TI, et al: Effects of an oral adsorbent on oxidative stress and fibronectin expression in experimental diabetic nephropathy. Nephrol Dial Transplant. 25:2134–2141. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ha H, Yu MR, Choi YJ, Kitamura M and Lee HB: Role of high glucose-induced nuclear factor-kappaB activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol. 13:894–902. 2002.PubMed/NCBI | |
Morii T, Fujita H, Narita T, Shimotomai T, Fujishima H, Yoshioka N, Imai H, Kakei M and Ito S: Association of monocyte chemoattractant protein-1 with renal tubular damage in diabetic nephropathy. J Diabetes Complications. 17:11–15. 2003. View Article : Google Scholar | |
Day RT, Cavaglieri RC and Feliers D: Apelin retards the progression of diabetic nephropathy. Am J Physiol Renal Physiol. 304:F788–F800. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nishida M, Okumura Y, Oka T, Toiyama K, Ozawa S, Itoi T and Hamaoka K: The role of apelin on the alleviative effect of Angiotensin receptor blocker in unilateral ureteral obstruction-induced renal fibrosis. Nephron Extra. 2:39–47. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cameron NE and Cotter MA: Pro-inflammatory mechanisms in diabetic neuropathy: Focus on the nuclear factor kappa B pathway. Curr Drug Targets. 9:60–67. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ganesh Yerra V, Negi G, Sharma SS and Kumar A: Potential therapeutic effects of the simultaneous targeting of the Nrf2 and NF-κB pathways in diabetic neuropathy. Redox Biol. 1:394–397. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zeng XJ, Yu SP, Zhang L and Wei L: Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons. Exp Cell Res. 316:1773–1783. 2010. View Article : Google Scholar : PubMed/NCBI | |
Simó R, Carrasco E, García-Ramírez M and Hernández C: Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev. 2:71–98. 2006. View Article : Google Scholar | |
Tao Y, Lu Q, Jiang YR, Qian J, Wang JY, Gao L and Jonas JB: Apelin in plasma and vitreous and in fibrovascular retinal membranes of patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 51:4237–4242. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu Q, Feng J and Jiang YR: The role of apelin in the retina of diabetic rats. PLoS One. 8:e697032013. View Article : Google Scholar : PubMed/NCBI | |
Saint-Geniez M, Masri B, Malecaze F, Knibiehler B and Audigier Y: Expression of the murine msr/apj receptor and its ligand apelin is upregulated during formation of the retinal vessels. Mech Dev. 110:183–186. 2002. View Article : Google Scholar | |
Cain K, Bratton SB and Cohen GM: The Apaf-1 apoptosome: A large caspase-activating complex. Biochimie. 84:203–214. 2002. View Article : Google Scholar : PubMed/NCBI | |
Matsushita H, Morishita R, Nata T, Aoki M, Nakagami H, Taniyama Y, Yamamoto K, Higaki J, Yasufumi K and Ogihara T: Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB (NF-kappaB)-mediated bcl-2 suppression: In vivo evidence of the importance of NF-kappaB in endothelial cell regulation. Circ Res. 86:974–981. 2000. View Article : Google Scholar : PubMed/NCBI | |
Di Stilo A, Chegaev K, Lazzarato L, Fruttero R, Gasco A, Rastaldo R and Cappello S: Effects of nitric oxide donor antioxidants containing the phenol vitamin E substructure and a furoxan moiety on ischemia/reperfusion injury. Arzneimittelforschung. 59:111–116. 2009.PubMed/NCBI | |
Rastaldo R, Cappello S, Folino A, Di Stilo A, Chegaev K, Tritto I, Pagliaro P and Losano G: Low concentrations of an nitric oxide-donor combined with a liposoluble antioxidant compound enhance protection against reperfusion injury in isolated rat hearts. J Physiol Pharmacol. 61:21–27. 2010.PubMed/NCBI | |
Chen Z, Li T and Zhang B: Morphine postconditioning protects against reperfusion injury in the isolated rat hearts. J Surg Res. 145:287–294. 2008. View Article : Google Scholar | |
Zeng XJ, Zhang LK, Wang HX, Lu LQ, Ma LQ and Tang CS: Apelin protects heart against ischemia/reperfusion injury in rat. Peptides. 30:1144–1152. 2009. View Article : Google Scholar : PubMed/NCBI | |
Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM and Smith CC: Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res Cardiol. 102:518–528. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sorli SC, Le Gonidec S, Knibiehler B and Audigier Y: Apelin is a potent activator of tumour neoangiogenesis. Oncogene. 26:7692–7699. 2007. View Article : Google Scholar : PubMed/NCBI | |
Han S, Wang G, Qi X, Lee HM, Englander EW and Greeley GH Jr: A possible role for hypoxia-induced apelin expression in enteric cell proliferation. Am J Physiol Regul Integr Comp Physiol. 294:R1832–R1839. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu J and Wang Z: Increased oxidative stress as a selective anticancer therapy. Oxid Med Cell Longev. 2015:2943032015. View Article : Google Scholar : PubMed/NCBI | |
Sawicka E, Lisowska A, Kowal P and Długosz A: The role of oxidative stress in bladder cancer. Postepy Hig Med Dosw (Online). 69:744–752. 2015.In Polish. View Article : Google Scholar | |
Raina K, Tyagi A, Kumar D, Agarwal R and Agarwal C: Role of oxidative stress in cytotoxicity of grape seed extract in human bladder cancer cells. Food Chem Toxicol. 61:187–195. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tong L, Chuang CC, Wu S and Zuo L: Reactive oxygen species in redox cancer therapy. Cancer Lett. 367:18–25. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shipitsin M and Polyak K: The cancer stem cell hypothesis: In search of definitions, markers, and relevance. Lab Invest. 88:459–463. 2008. View Article : Google Scholar : PubMed/NCBI | |
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Zhang Y, Zheng J and Pan J: Reactive oxygen species in cancer stem cells. Antioxid Redox Signal. 16:1215–1228. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gu Q, Zhai L, Feng X, Chen J, Miao Z, Ren L, Qian X, Yu J, Li Y, Xu X, et al: Apelin-36, a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway. Neurochem Int. 63:535–540. 2013. View Article : Google Scholar : PubMed/NCBI | |
Silva A, Yunes JA, Cardoso BA, Martins LR, Jotta PY, Abecasis M, Nowill AE, Leslie NR, Cardoso AA and Barata JT: PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest. 3762–3774. 2008. View Article : Google Scholar : PubMed/NCBI | |
Min KJ, Lee JT, Joe EH and Kwon TK: An IκBα phosphorylation inhibitor induces heme oxygenase-1(HO-1) expression through the activation of reactive oxygen species (ROS)-Nrf2-ARE signaling and ROS-PI3K/Akt signaling in an NF-κB-independent mechanism. Cell Signal. 23:1505–1513. 2011. View Article : Google Scholar : PubMed/NCBI | |
Khaksari M, Aboutaleb N, Nasirinezhad F, Vakili A and Madjd Z: Apelin-13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia. J Mol Neurosci. 48:201–208. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bao HJ, Zhang L, Han WC and Dai DK: Apelin-13 attenuates traumatic brain injury-induced damage by suppressing autophagy. Neurochem Res. 40:89–97. 2015. View Article : Google Scholar | |
Kasai A, Kinjo T, Ishihara R, Sakai I, Ishimaru Y, Yoshioka Y, Yamamuro A, Ishige K, Ito Y and Maeda S: Apelin deficiency accelerates the progression of amyotrophic lateral sclerosis. PLoS One. 6:e239682011. View Article : Google Scholar : PubMed/NCBI | |
Kidoya H, Ueno M, Yamada Y, Mochizuki N, Nakata M, Yano T, Fujii R and Takakura N: Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J. 27:522–534. 2008. View Article : Google Scholar : PubMed/NCBI | |
Inuzuka H, Nishizawa H, Inagaki A, Suzuki M, Ota S, Miyamura H, Miyazaki J, Sekiya T, Kurahashi H and Udagawa Y: Decreased expression of apelin in placentas from severe pre-eclampsia patients. Hypertens Pregnancy. 32:410–421. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bortoff KD, Qiu C, Runyon S, Williams MA and Maitra R: Decreased maternal plasma apelin concentrations in preeclampsia. Hypertens Pregnancy. 31:398–404. 2012. View Article : Google Scholar : PubMed/NCBI | |
Furuya M, Okuda M, Usui H, Takenouchi T, Kami D, Nozawa A, Shozu M, Umezawa A, Takahashi T and Aoki I: Expression of angiotensin II receptor-like 1 in the placentas of pregnancy-induced hypertension. Int J Gynecol Pathol. 31:227–235. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vatish M, Randeva HS and Grammatopoulos DK: Hormonal regulation of placental nitric oxide and pathogenesis of pre-eclampsia. Trends Mol Med. 12:223–233. 2006. View Article : Google Scholar : PubMed/NCBI | |
Han S, Wang G, Qi X, Englander EW and Greeley GH Jr: Involvement of a Stat3 binding site in inflammation-induced enteric apelin expression. Am J Physiol Gastrointest Liver Physiol. 295:G1068–G1078. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Chen X, Wang X, Xu C, Guo Q, Zhu L, Zhu S and Xu J: Pre-protective effect of lipoic acid on injury induced by H2O2 in IPEC-J2 cells. Mol Cell Biochem. 378:73–81. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baregamian N, Song J, Jeschke MG, Evers BM and Chung DH: IGF-1 protects intestinal epithelial cells from oxidative stress-induced apoptosis. J Surg Res. 136:31–37. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gad GI, Ismail RI, El-Masry SA and Gouda HR: Serum apelin in early-onset neonatal sepsis: Is it diagnostic? J Neonatal Perinatal Med. 7:207–212. 2014.PubMed/NCBI | |
Lesur O, Roussy JF, Chagnon F, Gallo-Payet N, Dumaine R, Sarret P, Chraibi A, Chouinard L and Hogue B: Proven infection-related sepsis induces a differential stress response early after ICU admission. Crit Care. 14:R1312010. View Article : Google Scholar : PubMed/NCBI | |
Pan CS, Teng X, Zhang J, Cai Y, Zhao J, Wu W, Wang X, Tang CS and Qi YF: Apelin antagonizes myocardial impairment in sepsis. J Card Fail. 16:609–617. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mertens K, Lowes DA, Webster NR, Talib J, Hall L, Davies MJ, Beattie JH and Galley HF: Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br J Anaesth. 114:990–999. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bar-Or D, Carrick MM, Mains CW, Rael LT, Slone D and Brody EN: Sepsis, oxidative stress, and hypoxia: Are there clues to better treatment? Redox Rep. 20:193–197. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rastaldo R, Cappello S, Folino A and Losano G: Effect of apelin-apelin receptor system in postischaemic myocardial protection: a pharmacological postconditioning tool? Antioxid Redox Signal. 14:909–922. 2011. View Article : Google Scholar | |
Azizi Y, Faghihi M, Imani A, Roghani M and Nazari A: Post-infarct treatment with [Pyr1]-apelin-13 reduces myocardial damage through reduction of oxidative injury and nitric oxide enhancement in the rat model of myocardial infarction. Peptides. 46:76–82. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen XY, Liu XM, Feng LL and Tang CS: Changes and clinical significance of serum Apelin in patients with severe sepsis and septic shock. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 30:131–135. 2008.In Chinese. PubMed/NCBI | |
Cao J, Li H and Chen L: Targeting drugs to APJ receptor: The prospect of treatment of hypertension and other cardiovascular diseases. Curr Drug Targets. 16:148–155. 2015. View Article : Google Scholar | |
Iturrioz X, Alvear-Perez R, De Mota N, Franchet C, Guillier F, Leroux V, Dabire H, Le Jouan M, Chabane H, Gerbier R, et al: Identification and pharmacological properties of E339-3D6, the first nonpeptidic apelin receptor agonist. FASEB J. 24:1506–1517. 2010. View Article : Google Scholar | |
Khan P, Maloney PR, Hedrick M, Gosalia P, Milewski M, Li L, Roth GP, Sergienko E, Suyama E, Sugarman E, et al: Functional Agonists of the Apelin (APJ) Receptor. Probe Reports from the NIH Molecular Libraries Program [Internet]. Last Update. Dec 12–2011 | |
Mendez M: Renin release: Role of SNAREs. Am J Physiol Regul Integr Comp Physiol. 307:R484–R486. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maloney PR, Khan P, Hedrick M, Gosalia P, Milewski M, Li L, Roth GP, Sergienko E, Suyama E, Sugarman E, et al: Discovery of 4-oxo-6-((pyrimidin-2-ylthio)methyl)-4H-pyran-3-yl 4-nitro-benzoate (ML221) as a functional antagonist of the apelin (APJ) receptor. Bioorg Med Chem Lett. 22:6656–6660. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou N, Fang J, Acheampong E, Mukhtar M and Pomerantz RJ: Binding of ALX40-4C to APJ, a CNS-based receptor, inhibits its utilization as a co-receptor by HIV-1. Virology. 312:196–203. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Maitra R, Harris DL, Dhungana S, Snyder R and Runyon SP: Identifying structural determinants of potency for analogs of apelin-13: Integration of C-terminal truncation with structure-activity. Bioorg Med Chem. 22:2992–2997. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jin G, Yang P, Gong Y, Fan X, Tang J and Lin J: Effects of puerarin on expression of apelin and its receptor of 2K1C renal hypertension rats. Zhongguo Zhong Yao Za Zhi. 34:3263–3267. 2009.In Chinese. | |
Wu D, He L and Chen L: Apelin/APJ system: A promising therapy target for hypertension. Mol Biol Rep. 41:6691–6703. 2014. View Article : Google Scholar : PubMed/NCBI | |
El Messari S, Iturrioz X, Fassot C, De Mota N, Roesch D and Llorens-Cortes C: Functional dissociation of apelin receptor signaling and endocytosis: Implications for the effects of apelin on arterial blood pressure. J Neurochem. 90:1290–1301. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang BH, Wang W, Wang H, Yin J and Zeng XJ: Promoting effects of the adipokine, apelin, on diabetic nephropathy. PLoS One. 8:e604572013. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Wan D, Wang L, Peng A, Xiao H, Petersen RB, Liu C, Zheng L and Huang K: Apelin protects against acute renal injury by inhibiting TGF-β1. Biochim Biophys Acta. 1852:1278–1287. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Zhang X, Cui H, Zhang C, Zhu C and Li L: Apelin-13 protects the brain against ischemia/reperfusion injury through activating PI3K/Akt and ERK1/2 signaling pathways. Neurosci Lett. 568:44–49. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xin Q, Cheng B, Pan Y, Liu H, Yang C, Chen J and Bai B: Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides. 63:55–62. 2015. View Article : Google Scholar |