1
|
Hentze MW, Muckenthaler MU and Andrews NC:
Balancing acts: molecular control of mammalian iron metabolism.
Cell. 117:285–297. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wu Y and Brosh RM Jr: DNA helicase and
helicase-nuclease enzymes with a conserved iron-sulfur cluster.
Nucleic Acids Res. 40:4247–4260. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Brzóska K, Meczyńska S and Kruszewski M:
Iron-sulfur cluster proteins: electron transfer and beyond. Acta
Biochim Pol. 53:685–691. 2006.PubMed/NCBI
|
4
|
Evstatiev R and Gasche C: Iron sensing and
signalling. Gut. 61:933–952. 2012. View Article : Google Scholar
|
5
|
Ganz T and Nemeth E: Hepcidin and
disorders of iron metabolism. Annu Rev Med. 62:347–360. 2011.
View Article : Google Scholar
|
6
|
Ganz T and Nemeth E: Hepcidin and iron
homeostasis. Biochim Biophys Acta. 1823:1434–1443. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Camaschella C: Understanding iron
homeostasis through genetic analysis of hemochromatosis and related
disorders. Blood. 106:3710–3717. 2005. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ganz T: Systemic iron homeostasis. Physiol
Rev. 93:1721–1741. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Tanno T, Bhanu NV, Oneal PA, Goh SH,
Staker P, Lee YT, Moroney JW, Reed CH, Luban NL, Wang RH, et al:
High levels of GDF15 in thalassemia suppress expression of the iron
regulatory protein hepcidin. Nat Med. 13:1096–1101. 2007.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Tanno T, Porayette P, Sripichai O, Noh SJ,
Byrnes C, Bhupatiraju A, Lee YT, Goodnough JB, Harandi O, Ganz T,
et al: Identification of TWSG1 as a second novel erythroid
regulator of hepcidin expression in murine and human cells. Blood.
114:181–186. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kautz L, Jung G, Valore EV, Rivella S,
Nemeth E and Ganz T: Identification of erythroferrone as an
erythroid regulator of iron metabolism. Nat Genet. 46:678–684.
2014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kumar A, Ekavali, Chopra K, Mukherjee M,
Pottabathini R and Dhull DK: Current knowledge and pharmacological
profile of berberine: an update. Eur J Pharmacol. 761:288–297.
2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ghosh S, Banerjee S and Sil PC: The
beneficial role of curcumin on inflammation, diabetes and
neurodegenerative disease: a recent update. Food Chem Toxicol.
83:111–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mancuso C and Santangelo R: Ferulic acid:
pharmacological and toxicological aspects. Food Chem Toxicol.
65:185–195. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ren S, Zhang H, Mu Y, Sun M and Liu P:
Pharmacological effects of astragaloside IV: a literature review. J
Tradit Chin Med. 33:413–416. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiang YR and Chen KJ: Pharmacological
roles of ligustrazine in cardio-/cerebrovascular systems and its
progress in researches of clinical application. Zhongguo Zhong Xi
Yi Jie He Za Zhi. 33:707–711. 2013.In Chinese. PubMed/NCBI
|
17
|
Chen Y, Huang JH, Ning Y and Shen ZY:
Icariin and its pharmaceutical efficacy: research progress of
molecular mechanism. Zhong Xi Yi Jie He Xue Bao. 9:1179–1184.
2011.In Chinese. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun LR, Cao X, Hou FQ, Zhu XH and Gao TM:
Progressive studies of paeoniflorin. Zhongguo Zhong Yao Za Zhi.
33:2028–2032. 2008.In Chinese.
|
19
|
Jia JM, Wang ZQ, Wu LJ and Wu YL: Advance
of pharmacological study on ginsenoside Rb1. Zhongguo Zhong Yao Za
Zhi. 33:1371–1377. 2008.In Chinese. PubMed/NCBI
|
20
|
Tai MC, Tsang SY, Chang LY and Xue H:
Therapeutic potential of wogonin: a naturally occurring flavonoid.
CNS Drug Rev. 11:141–150. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chinese Pharmacopoeia Commission:
Pharmacopoeia of the People's Republic of China China. Medical
Science; Press, Beijing: 2010
|
22
|
Zhang W, Yan ZF, Gao JH, Sun L, Huang XY,
Liu Z, Yu SY, Cao CJ, Zuo LJ, Chen ZJ, et al: Role and mechanism of
microglial activation in iron-induced selective and progressive
dopaminergic neurodegeneration. Mol Neurobiol. 49:1153–1165. 2014.
View Article : Google Scholar
|
23
|
Liu W, Zhang S, Wang L, Qu C, Zhang C,
Hong L, Yuan L, Huang Z, Wang Z, Liu S and Jiang G: CdSe quantum
dot (QD)-induced morphological and functional impairments to liver
in mice. PLoS One. 6:e244062011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen Y, Wang Z, Xu M, Wang X, Liu R, Liu
Q, Zhang Z, Xia T, Zhao J, Jiang G, et al: Nanosilver incurs an
adaptive shunt of energy metabolism mode to glycolysis in tumor and
nontumor cells. ACS Nano. 8:5813–5825. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang S, Chen Y, Guo W, Yuan L, Zhang D,
Xu Y, Nemeth E, Ganz T and Liu S: Disordered hepcidin-ferroportin
signaling promotes breast cancer growth. Cell Signal. 26:2539–2550.
2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lesbordes-Brion JC, Viatte L, Bennoun M,
Lou DQ, Ramey G, Houbron C, Hamard G, Kahn A and Vaulont S:
Targeted disruption of the hepcidin 1 gene results in severe
hemochromatosis. Blood. 108:1402–1405. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ramos E, Ruchala P, Goodnough JB, Kautz L,
Preza GC, Nemeth E and Ganz T: Minihepcidins prevent iron overload
in a hepcidin-deficient mouse model of severe hemochromatosis.
Blood. 120:3829–3836. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu S, Suragani RN, Han A, Zhao W, Andrews
NC and Chen JJ: Deficiency of heme-regulated eIF2alpha kinase
decreases hepcidin expression and splenic iron in
HFE−/− mice. Haematologica.
93:753–756. 2008. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu S, Suragani RN, Wang F, Han A, Zhao W,
Andrews NC and Chen JJ: The function of heme-regulated eIF2alpha
kinase in murine iron homeostasis and macrophage maturation. J Clin
Invest. 117:3296–3305. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Park CH, Valore EV, Waring AJ and Ganz T:
Hepcidin, a urinary antimicrobial peptide synthesized in the liver.
J Biol Chem. 276:7806–7810. 2001. View Article : Google Scholar
|
31
|
Hou Y, Zhang S, Wang L, Li J, Qu G, He J,
Rong H, Ji H and Liu S: Estrogen regulates iron homeostasis through
governing hepatic hepcidin expression via an estrogen response
element. Gene. 511:398–403. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Nemeth E, Rivera S, Gabayan V, Keller C,
Taudorf S, Pedersen BK and Ganz T: IL-6 mediates hypoferremia of
inflammation by inducing the synthesis of the iron regulatory
hormone hepcidin. J Clin Invest. 113:1271–1276. 2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wrighting DM and Andrews NC: Interleukin-6
induces hepcidin expression through STAT3. Blood. 108:3204–3209.
2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Pigeon C, Ilyin G, Courselaud B, Leroyer
P, Turlin B, Brissot P and Loréal O: A new mouse liver-specific
gene, encoding a protein homologous to human antimicrobial peptide
hepcidin, is overexpressed during iron overload. J Biol Chem.
276:7811–7819. 2001. View Article : Google Scholar
|
35
|
Poli M, Asperti M, Naggi A, Campostrini N,
Girelli D, Corbella M, Benzi M, Besson-Fournier C, Coppin H,
Maccarinelli F, et al: Glycol-split nonanticoagulant heparins are
inhibitors of hepcidin expression in vitro and in vivo. Blood.
123:1564–1573. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lee P, Peng H, Gelbart T and Beutler E:
The IL-6- and lipopolysaccharide-induced transcription of hepcidin
in HFE-, transferrin receptor 2-, and beta
2-microglobulin-deficient hepatocytes. Proc Natl Acad Sci USA.
101:9263–9265. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Adams PC and Barton JC: How I treat
hemochromatosis. Blood. 116:317–325. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pennell DJ, Porter JB, Cappellini MD,
El-Beshlawy A, Chan LL, Aydinok Y, Elalfy MS, Sutcharitchan P, Li
CK, Ibrahim H, et al: Efficacy of deferasirox in reducing and
preventing cardiac iron overload in beta-thalassemia. Blood.
115:2364–2371. 2010. View Article : Google Scholar
|
39
|
Zhen AW, Nguyen NH, Gibert Y, Motola S,
Buckett P, Wessling-Resnick M, Fraenkel E and Fraenkel PG: The
small molecule, genistein, increases hepcidin expression in human
hepatocytes. Hepatology. 58:1315–1325. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Gaun V, Patchen B, Volovetz J, Zhen AW,
Andreev A, Pollastri MP and Fraenkel PG: A chemical screen
identifies small molecules that regulate hepcidin expression. Blood
Cells Mol Dis. 53:231–240. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kennedy DO and Wightman EL: Herbal
extracts and phytochemicals: plant secondary metabolites and the
enhancement of human brain function. Adv Nutr. 2:32–50. 2011.
View Article : Google Scholar :
|
42
|
Ziegler G, Ploch M, Miettinen-Baumann A
and Collet W: Efficacy and tolerability of valerian extract LI 156
compared with oxazepam in the treatment of non-organic insomnia - a
randomized, double-blind, comparative clinical study. Eur J Med
Res. 7:480–486. 2002.
|
43
|
Guan Y, An P, Zhang Z, Zhang F, Yu Y, Wu
Q, Shi Y, Guo X, Tao Y and Wang F: Screening identifies the Chinese
medicinal plant Caulis Spatholobi as an effective HAMP expression
inhibitor. J Nutr. 143:1061–1066. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bartnikas TB and Fleming MD: A tincture of
hepcidin cures all: the potential for hepcidin therapeutics. J Clin
Invest. 120:4187–4190. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ma H, He X, Yang Y, Li M, Hao D and Jia Z:
The genus Epimedium: an ethnopharmacological and phytochemical
review. J Ethnopharmacol. 134:519–541. 2011. View Article : Google Scholar : PubMed/NCBI
|
46
|
Xu CQ, Liu BJ, Wu JF, Xu YC, Duan XH, Cao
YX and Dong JC: Icariin attenuates LPS-induced acute inflammatory
responses: involvement of PI3K/Akt and NF-kappaB signaling pathway.
Eur J Pharmacol. 642:146–153. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Li WW, Gao XM, Wang XM, Guo H and Zhang
BL: Icariin inhibits hydrogen peroxide-induced toxicity through
inhibition of phosphorylation of JNK/p38 MAPK and p53 activity.
Mutat Res. 708:1–10. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Song YH, Cai H, Gu N, Qian CF, Cao SP and
Zhao ZM: Icariin attenuates cardiac remodelling through
down-regulating myocardial apoptosis and matrix metalloproteinase
activity in rats with congestive heart failure. J Pharm Pharmacol.
63:541–549. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chung BH, Kim JD, Kim CK, Kim JH, Won MH,
Lee HS, Dong MS, Ha KS, Kwon YG and Kim YM: Icariin stimulates
angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent
signal pathways in human endothelial cells. Biochem Biophys Res
Commun. 376:404–408. 2008. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chen Y, Wang J, Jia X, Tan X and Hu M:
Role of intestinal hydrolase in the absorption of prenylated
flavonoids present in Yinyanghuo. Molecules. 16:1336–1348. 2011.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Chen Y, Zhao YH, Jia XB and Hu M:
Intestinal absorption mechanisms of prenylated flavonoids present
in the heat-processed Epimedium koreanum Nakai (Yin Yanghuo). Pharm
Res. 25:2190–2199. 2008. View Article : Google Scholar : PubMed/NCBI
|
52
|
Liu M, Liu H, Lu X, Li C, Xiong Z and Li
F: Simultaneous determination of icariin, icariside II and osthole
in rat plasma after oral administration of the extract of Gushudan
(a Chinese compound formulation) by LC-MS/MS. J Chromatogr B Analyt
Technol Biomed Life Sci. 860:113–120. 2007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Xu W, Sui ZG and Zhong W: Pharmacokinetics
of icariin and its two metabolites in rats. The Third China
Pharmacist Assembly. 1–5. 2011.
|