1
|
Zannad F, Agrinier N and Alla F: Heart
failure burden and therapy. Europace. 11(Suppl 5): v1–v9. 2009.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Orlic D, Kajstura J, Chimenti S, Jakoniuk
I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM,
et al: Bone marrow cells regenerate infarcted myocardium. Nature.
410:701–705. 2001. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Taylor DA, Atkins BZ, Hungspreugs P, Jones
TR, Reedy MC, Hutcheson KA, Glower DD and Kraus WE: Regenerating
functional myocardium: improved performance after skeletal myoblast
transplantation. Nat Med. 4:929–933. 1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Murry CE, Wiseman RW, Schwartz SM and
Hauschka SD: Skeletal myoblast transplantation for repair of
myocardial necrosis. J Clin Invest. 98:2512–2523. 1996. View Article : Google Scholar : PubMed/NCBI
|
5
|
Pagani FD, DerSimonian H, Zawadzka A,
Wetzel K, Edge AS, Jacoby DB, Dinsmore JH, Wright S, Aretz TH,
Eisen HJ and Aaronson KD: Autologous skeletal myoblasts
transplanted to ischemia-damaged myocardium in humans. Histological
analysis of cell survival and differentiation. J Am Coll Cardiol.
41:879–888. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Menasché P, Hagège AA, Scorsin M, Pouzet
B, Desnos M, Duboc D, Schwartz K, Vilquin JT and Marolleau JP:
Myoblast transplantation for heart failure. Lancet. 357:279–280.
2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Menasché P, Hagège AA, Vilquin JT, Desnos
M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K,
et al: Autologous skeletal myoblast transplantation for severe
postinfarction left ventricular dysfunction. J Am Coll Cardiol.
41:1078–1083. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Murry CE, Soonpaa MH, Reinecke H, Nakajima
H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH,
Poppa V, et al: Haematopoietic stem cells do not transdifferentiate
into cardiac myocytes in myocardial infarcts. Nature. 428:664–668.
2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Strauer BE, Brehm M, Zeus T, Köstering M,
Hernandez A, Sorg RV, Kögler G and Wernet P: Repair of infarcted
myocardium by autologous intracoronary mononuclear bone marrow cell
transplantation in humans. Circulation. 106:1913–1918. 2002.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Traverse JH, Henry TD, Pepine CJ,
Willerson JT, Zhao DX, Ellis SG, Forder JR, Anderson RD,
Hatzopoulos AK, Penn MS, et al: Cardiovascular Cell Therapy
Research Network (CCTRN): Effect of the use and timing of bone
marrow mononuclear cell delivery on left ventricular function after
acute myocardial infarction: the TIME randomized trial. JAMA.
308:2380–2389. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sürder D, Schwitter J, Moccetti T, Astori
G, Rufibach K, Plein S, Lo Cicero V, Soncin S, Windecker S,
Moschovitis A, et al: Cell-based therapy for myocardial repair in
patients with acute myocardial infarction: rationale and study
design of the SWiss multicenter Intracoronary Stem cells Study in
Acute Myocardial Infarction (SWISS-AMI). Am Heart J. 160:58–64.
2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Traverse JH, Henry TD, Ellis SG, Pepine
CJ, Willerson JT, Zhao DX, Forder JR, Byrne BJ, Hatzopoulos AK,
Penn MS, et al: Cardiovascular Cell Therapy Research Network:
Effect of intracoronary delivery of autologous bone marrow
mononuclear cells 2 to 3 weeks following acute myocardial
infarction on left ventricular function: the LateTIME randomized
trial. JAMA. 306:2110–2119. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Davani S, Marandin A, Mersin N, Royer B,
Kantelip B, Hervé P, Etievent JP and Kantelip JP: Mesenchymal
progenitor cells differentiate into an endothelial phenotype,
enhance vascular density, and improve heart function in a rat
cellular cardiomyoplasty model. Circulation. 108(Suppl 1):
II253–II258. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen SL, Fang WW, Ye F, Liu YH, Qian J,
Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S and Sun JP: Effect on
left ventricular function of intracoronary transplantation of
autologous bone marrow mesenchymal stem cell in patients with acute
myocardial infarction. Am J Cardiol. 94:92–95. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hare JM, Fishman JE, Gerstenblith G,
DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E,
Johnston PV, Brinker JA, et al: Comparison of allogeneic vs
autologous bone marrow-derived mesenchymal stem cells delivered by
transendocardial injection in patients with ischemic
cardiomyopathy: the POSEIDON randomized trial. JAMA. 308:2369–2379.
2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Manginas A, Goussetis E, Koutelou M,
Karatasakis G, Peristeri I, Theodorakos A, Leontiadis E, Plessas N,
Theodosaki M, Graphakos S, et al: Pilot study to evaluate the
safety and feasibility of intracoronary CD133(+) and CD133(−)
CD34(+) cell therapy in patients with nonviable anterior myocardial
infarction. Catheter Cardiovasc Interv. 69:773–781. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Patel AN, Geffner L, Vina RF, Saslavsky J,
Urschel HC Jr, Kormos R and Benetti F: Surgical treatment for
congestive heart failure with autologous adult stem cell
transplantation: aprospective randomized study. J Thorac Cardiovasc
Surg. 130:1631–1638. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Stamm C, Kleine HD, Choi YH, Dunkelmann S,
Lauffs JA, Lorenzen B, David A, Liebold A, Nienaber C, Zurakowski
D, et al: Intramyocardial delivery of CD133+ bone marrow
cells and coronary artery bypass grafting for chronic ischemic
heart disease: safety and efficacy studies. J Thorac Cardiovasc
Surg. 133:717–725. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Perin EC, Silva GV, Zheng Y, Gahremanpour
A, Canales J, Patel D, Fernandes MR, Keller LH, Quan X, Coulter SA,
et al: Randomized, double-blind pilot study of transendocardial
injection of autologous aldehyde dehydrogenase-bright stem cells in
patients with ischemic heart failure. Am Heart J. 163:415–421.
421.e12012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Miyahara Y, Nagaya N, Kataoka M, Yanagawa
B, Tanaka K, Hao H, Ishino K, Ishida H, Shimizu T, Kangawa K, et
al: Monolayered mesenchymal stem cells repair scarred myocardium
after myocardial infarction. Nat Med. 12:459–465. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mazo M, Planat-Bénard V, Abizanda G,
Pelacho B, Léobon B, Gavira JJ, Peñuelas I, Cemborain A, Pénicaud
L, Laharrague P, et al: Transplantation of adipose derived stromal
cells is associated with functional improvement in a rat model of
chronic myocardial infarction. Eur J Heart Fail. 10:454–462. 2008.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Linke A, Müller P, Nurzynska D, Casarsa C,
Torella D, Nascimbene A, Castaldo C, Cascapera S, Böhm M, Quaini F,
et al: Stem cells in the dog heart are self-renewing, clonogenic,
and multipotent and regenerate infarcted myocardium, improving
cardiac function. Proc Natl Acad Sci USA. 102:8966–8971. 2005.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Fischer KM, Cottage CT, Wu W, Din S, Gude
NA, Avitabile D, Quijada P, Collins BL, Fransioli J and Sussman MA:
Enhancement of myocardial regeneration through genetic engineering
of cardiac progenitor cells expressing Pim-1 kinase. Circulation.
120:2077–2087. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Angert D, Berretta RM, Kubo H, Zhang H,
Chen X, Wang W, Ogorek B, Barbe M and Houser SR: Repair of the
injured adult heart involves new myocytes potentially derived from
resident cardiac stem cells. Circ Res. 108:1226–1237. 2011.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Bolli R, Chugh AR, D'Amario D, Loughran
JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T,
et al: Cardiac stem cells in patients with ischaemic cardiomyopathy
(SCIPIO): initial results of a randomised phase 1 trial. Lancet.
378:1847–1857. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Makkar RR, Smith RR, Cheng K, Malliaras K,
Thomson LE, Berman D, Czer LS, Marbán L, Mendizabal A, Johnston PV,
et al: Intracoronary cardiosphere-derived cells for heart
regeneration after myocardial infarction (CADUCEUS): a prospective,
randomised phase 1 trial. Lancet. 379:895–904. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Smith RR, Marban E and Marban L: Enhancing
retention and efficacy of cardiosphere-derived cells administered
after myocardial infarction using a hyaluronan-gelatin hydrogel.
Biomatter. 3:e244902013. View Article : Google Scholar : PubMed/NCBI
|
28
|
Bonios M, Chang CY, Pinheiro A, Dimaano
VL, Higuchi T, Melexopoulou C, Bengel F, Terrovitis J, Abraham TP
and Abraham MR: Cardiac resynchronization by cardiosphere-derived
stem cell transplantation in an experimental model of myocardial
infarction. J Am Soc Echocardiogr. 24:808–814. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Oh H, Bradfute SB, Gallardo TD, Nakamura
T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry
DJ, et al: Cardiac progenitor cells from adult myocardium: homing,
differentiation, and fusion after infarction. Proc Natl Acad Sci
USA. 100:12313–12318. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kehat I, Khimovich L, Caspi O, Gepstein A,
Shofti R, Arbel G, Huber I, Satin J, Itskovitz-Eldor J and Gepstein
L: Electromechanical integration of cardiomyocytes derived from
human embryonic stem cells. Nat Biotechnol. 22:1282–1289. 2004.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Min JY, Yang Y, Converso KL, Liu L, Huang
Q, Morgan JP and Xiao YF: Transplantation of embryonic stem cells
improves cardiac function in postinfarcted rats. J Appl Physiol
(1985). 92:288–296. 2002.
|
32
|
Takahashi K, Tanabe K, Ohnuki M, Narita M,
Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell.
131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ma T, Xie M, Laurent T and Ding S:
Progress in the reprogramming of somatic cells. Circ Res.
112:562–574. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Strauer BE, Brehm M, Zeus T, Gattermann N,
Hernandez A, Sorg RV, Kogler G and Wernet P: Intracoronary, human
autologous stem cell transplantation for myocardial regeneration
following myocardial infarction. Dtsch Med Wochenschr. 126:932–938.
2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Bui QT, Gertz ZM and Wilensky RL:
Intracoronary delivery of bone-marrow-derived stem cells. Stem Cell
Res Ther. 1:292010. View
Article : Google Scholar : PubMed/NCBI
|
37
|
Wojakowski W, Tendera M, Cybulski W,
Zuba-Surma EK, Szade K, Florczyk U, Kozakowska M, Szymula A, Krzych
L, Paslawska U, Paslawski R, Milewski K, Buszman PP, Nabialek E,
Kuczmik W, Janiszewski A, Dziegiel P, Buszman PE, Jozkowicz A and
Dulak J: Effects of intracoronary delivery of allogenic bone
marrow-derived stem cells expressing heme oxygenase-1 on myocardial
reperfusion injury. Thromb Haemost. 108:464–475. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi
JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM and
Asahara T: Therapeutic potential of ex vivo expanded endothelial
progenitor cells for myocardial ischemia. Circulation. 103:634–637.
2001. View Article : Google Scholar : PubMed/NCBI
|
39
|
Pittenger MF and Martin BJ: Mesenchymal
stem cells and their potential as cardiac therapeutics. Circ Res.
95:9–20. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hofmann M, Wollert KC, Meyer GP, Menke A,
Arseniev L, Hertenstein B, Ganser A, Knapp WH and Drexler H:
Monitoring of bone marrow cell homing into the infarcted human
myocardium. Circulation. 111:2198–2202. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Norol F, Merlet P, Isnard R, Sebillon P,
Bonnet N, Cailliot C, Carrion C, Ribeiro M, Charlotte F, Pradeau P,
et al: Influence of mobilized stem cells on myocardial infarct
repair in a nonhuman primate model. Blood. 102:4361–4368. 2003.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Powell TM, Paul JD, Hill JM, Thompson M,
Benjamin M, Rodrigo M, McCoy JP, Read EJ, Khuu HM, Leitman SF, et
al: Granulocyte colony-stimulating factor mobilizes functional
endothelial progenitor cells in patients with coronary artery
disease. Arterioscler Thromb Vasc Biol. 25:296–301. 2005.
View Article : Google Scholar
|
43
|
Archundia A, Aceves JL, Lopez-Hernandez M,
Alvarado M, Rodriguez E, Diaz QG, Paez A, Rojas FM and Montano LF:
Direct cardiac injection of G-CSF mobilized bone-marrow stem-cells
improves ventricular function in old myocardial infarction. Life
Sci. 78:279–283. 2005. View Article : Google Scholar : PubMed/NCBI
|
44
|
Laham RJ, Post M, Rezaee M, Donnell-Fink
L, Wykrzykowska JJ, Lee SU, Baim DS and Sellke FW: Transendocardial
and transepicardial intramyocardial fibroblast growth factor-2
administration: Myocardial and tissue distribution. Drug Metab
Dispos. 33:1101–1107. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Klemm HU, Franzen O, Ventura R and Willems
S: Catheter based simultaneous mapping of cardiac activation and
motion: a review. Indian Pacing Electrophysiol J. 7:148–159.
2007.PubMed/NCBI
|
46
|
Perin EC, Silva GV, Henry TD,
Cabreira-Hansen MG, Moore WH, Coulter SA, Herlihy JP, Fernandes MR,
Cheong BY, Flamm SD, Traverse JH, Zheng Y, Smith D, Shaw S,
Westbrook L, Olson R, Patel D, Gahremanpour A, Canales J, Vaughn WK
and Willerson JT: A randomized study of transendocardial injection
of autologous bone marrow mononuclear cells and cell function
analysis in ischemic heart failure (FOCUS-HF). Am Heart J.
161:1078–1087. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wu K, Mo X, Lu S and Han Z: Retrograde
delivery of stem cells: Promising delivery strategy for myocardial
regenerative therapy. Clin Transplant. 25:830–833. 2011. View Article : Google Scholar : PubMed/NCBI
|
48
|
Limbourg FP, Ringes-Lichtenberg S,
Schaefer A, Jacoby C, Mehraein Y, Jäger MD, Limbourg A, Fuchs M,
Klein G, Ballmaier M, et al: Haematopoietic stem cells improve
cardiac function after infarction without permanent cardiac
engraftment. Eur J Heart Fail. 7:722–729. 2005. View Article : Google Scholar : PubMed/NCBI
|
49
|
Leri A, Kajstura J and Anversa P: Cardiac
stem cells and mechanisms of myocardial regeneration. Physiol Rev.
85:1373–1416. 2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Humar R, de Miguel LS, Kiefer FN and
Battegay EJ: Formation of new blood vessels in the heart can be
studied in cell cultures. (ALTEX Spec No 24). pp. 35–38. 2007
|
51
|
Kinnaird T, Stabile E, Burnett MS, Lee CW,
Barr S, Fuchs S and Epstein SE: Marrow-derived stromal cells
express genes encoding a broad spectrum of arteriogenic cytokines
and promote in vitro and in vivo arteriogenesis through paracrine
mechanisms. Circ Res. 94:678–685. 2004. View Article : Google Scholar : PubMed/NCBI
|
52
|
Kajstura J, Rota M, Whang B, Cascapera S,
Hosoda T, Bearzi C, Nurzynska D, Kasahara H, Zias E, Bonafé M, et
al: Bone marrow cells differentiate in cardiac cell lineages after
infarction independently of cell fusion. Circ Res. 96:127–137.
2005. View Article : Google Scholar
|