Importance of the interaction between immune cells and tumor vasculature mediated by thalidomide in cancer treatment (Review)
- Authors:
- Xin Wang
- Yanwei Shen
- Shuting Li
- Meng Lv
- Xiaoman Zhang
- Jiao Yang
- Fan Wang
- Jin Yang
-
Affiliations: Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China - Published online on: August 31, 2016 https://doi.org/10.3892/ijmm.2016.2724
- Pages: 1021-1029
This article is mentioned in:
Abstract
Sheskin J: Thalidomide in the treatment of lepra reactions. Clin Pharmacol Ther. 6:303–306. 1965. View Article : Google Scholar : PubMed/NCBI | |
D'Amato RJ, Loughnan MS, Flynn E and Folkman J: Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA. 91:4082–4085. 1994. View Article : Google Scholar : PubMed/NCBI | |
Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P, Munshi N, Anaissie E, Wilson C, Dhodapkar M, et al: Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 341:1565–1571. 1999. View Article : Google Scholar : PubMed/NCBI | |
Drake MJ, Robson W, Mehta P, Schofield I, Neal DE and Leung HY: An open-label phase II study of low-dose thalidomide in androgen-independent prostate cancer. Br J Cancer. 88:822–827. 2003. View Article : Google Scholar : PubMed/NCBI | |
Marx GM, Pavlakis N, McCowatt S, Boyle FM, Levi JA, Bell DR, Cook R, Biggs M, Little N and Wheeler HR: Phase II study of thalidomide in the treatment of recurrent glioblastoma multiforme. J Neurooncol. 54:31–38. 2001. View Article : Google Scholar | |
Figg WD, Dahut W, Duray P, Hamilton M, Tompkins A, Steinberg SM, Jones E, Premkumar A, Linehan WM, Floeter MK, et al: A randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer. Clin Cancer Res. 7:1888–1893. 2001.PubMed/NCBI | |
Eleutherakis-Papaiakovou V, Bamias A and Dimopoulos MA: Thalidomide in cancer medicine. Ann Oncol. 8:1151–1160. 2004. View Article : Google Scholar | |
Kesari S, Schiff D, Henson JW, Muzikansky A, Gigas DC, Doherty L, Batchelor TT, Longtine JA, Ligon KL, Weaver S, et al: Phase II study of temozolomide, thalidomide, and celecoxib for newly diagnosed glioblastoma in adults. Neuro Oncol. 10:300–308. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 307:58–62. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ansiaux R, Baudelet C, Jordan BF, Beghein N, Sonveaux P, De Wever J, Martinive P, Grégoire V, Feron O and Gallez B: Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin Cancer Res. 11:743–750. 2005.PubMed/NCBI | |
El-Aarag BY, Kasai T, Zahran MA, Zakhary NI, Shigehiro T, Sekhar SC, Agwa HS, Mizutani A, Murakami H, Kakuta H and Seno M: In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs. Int Immunopharmacol. 21:283–292. 2014. View Article : Google Scholar : PubMed/NCBI | |
Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT, Lin B, Podar K, Gupta D, Chauhan D, et al: Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood. 98:210–216. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kawamata A, Ito D, Odani T, Isobe T, Iwase M, Hatori M and Nagumo M: Thalidomide suppresses melanoma growth by activating natural killer cells in mice. Oncol Rep. 16:1231–1236. 2006.PubMed/NCBI | |
von Moos R, Stolz R, Cerny T and Gillessen S: Thalidomide: from tragedy to promise. Swiss Med Wkly. 133:77–87. 2003.PubMed/NCBI | |
Corral LG, Haslett PA, Muller GW, Chen R, Wong LM, Ocampo CJ, Patterson RT, Stirling DI and Kaplan G: Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J Immunol. 163:380–386. 1999.PubMed/NCBI | |
Corral LG and Kaplan G: Immunomodulation by thalidomide and thalidomide analogues. Ann Rheum Dis. 58(Suppl 1): I107–I113. 1999. View Article : Google Scholar : PubMed/NCBI | |
Haslett PA, Klausner JD, Makonkawkeyoon S, Moreira A, Metatratip P, Boyle B, Kunachiwa W, Maneekarn N, Vongchan P, Corral LG, et al: Thalidomide stimulates T cell responses and interleukin 12 production in HIV-infected patients. AIDS Res Hum Retroviruses. 15:1169–1179. 1999. View Article : Google Scholar : PubMed/NCBI | |
Muller GW, Chen R, Huang SY, Corral LG, Wong LM, Patterson RT, Chen Y, Kaplan G and Stirling DI: Amino-substituted thalidomide analogs: potent inhibitors of TNF-alpha production. Bioorg Med Chem Lett. 9:1625–1630. 1999. View Article : Google Scholar : PubMed/NCBI | |
Joussen AM, Germann T and Kirchhof B: Effect of thalidomide and structurally related compounds on corneal angiogenesis is comparable to their teratological potency. Graefes Arch Clin Exp Ophthalmol. 237:952–961. 1999. View Article : Google Scholar | |
Therapontos C, Erskine L, Gardner ER, Figg WD and Vargesson N: Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proc Natl Acad Sci USA. 106:8573–8578. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y and Handa H: Identification of a primary target of thalidomide teratogenicity. Science. 327:1345–1350. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yabu T, Tomimoto H, Taguchi Y, Yamaoka S, Igarashi Y and Okazaki T: Thalidomide-induced antiangiogenic action is mediated by ceramide through depletion of VEGF receptors, and is antagonized by sphingosine-1-phosphate. Blood. 106:125–134. 2005. View Article : Google Scholar : PubMed/NCBI | |
Verheul HM, Panigrahy D, Yuan J and D'Amato RJ: Combination oral antiangiogenic therapy with thalidomide and sulindac inhibits tumour growth in rabbits. Br J Cancer. 79:114–118. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bertolini F, Mingrone W, Alietti A, Ferrucci PF, Cocorocchio E, Peccatori F, Cinieri S, Mancuso P, Corsini C, et al: Thalidomide in multiple myeloma, myelodysplastic syndromes and histiocytosis. Analysis of clinical results and of surrogate angiogenesis markers. Ann Oncol. 12:987–990. 2001. View Article : Google Scholar : PubMed/NCBI | |
Li X, Liu X, Wang J, Wang Z, Jiang W, Reed E, Zhang Y, Liu Y and Li QQ: Effects of thalidomide on the expression of angiogenesis growth factors in human A549 lung adenocarcinoma cells. Int J Mol Med. 11:785–790. 2003.PubMed/NCBI | |
Vasvari GP, Dyckhoff G, Kashfi F, Lemke B, Lohr J, Helmke BM, Schirrmacher V, Plinkert PK, Beckhove P and Herold-Mende CC: Combination of thalidomide and cisplatin in an head and neck squamous cell carcinomas model results in an enhanced antiangiogenic activity in vitro and in vivo. Int J Cancer. 121:1697–1704. 2007. View Article : Google Scholar : PubMed/NCBI | |
Stephens TD, Bunde CJ and Fillmore BJ: Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol. 59:1489–1499. 2000. View Article : Google Scholar : PubMed/NCBI | |
Stephens TD and Fillmore BJ: Hypothesis: thalidomide embryopathy-proposed mechanism of action. Teratology. 61:189–195. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fujita J, Mestre JR, Zeldis JB, Subbaramaiah K and Dannenberg AJ: Thalidomide and its analogues inhibit lipopolysaccharide-mediated linduction of cyclooxygenase-2. Clin Cancer Res. 7:3349–3355. 2001.PubMed/NCBI | |
Chang SH, Liu CH, Conway R, Han DK, Nithipatikom K, Trifan OC, Lane TF and Hla T: Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA. 101:591–596. 2004. View Article : Google Scholar : | |
Yamada M, Kawai M, Kawai Y and Mashima Y: The effect of selective cyclooxygenase-2 inhibitor on corneal angiogenesis in the rat. Curr Eye Res. 19:300–304. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vargesson N: Thalidomide-induced limb defects: resolving a 50-year-old puzzle. BioEssays. 31:1327–1336. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vargesson N: Thalidomide embryopathy: An enigmatic challenge. ISRN Dev Biol. 241016:2013 View Article : Google Scholar | |
Feng Q, Tan HH, Ge ZZ, Gao YJ, Chen HM and Xiao SD: Thalidomide-induced angiopoietin 2, Notch1 and Dll4 downregulation under hypoxic condition in tissues with gastrointestinal vascular malformation and human umbilical vein endothelial cells. J Dig Dis. 15:85–95. 2014. View Article : Google Scholar | |
Li Y, Fu S, Chen H, Feng Q, Gao Y, Xue H, Ge Z, Fang J and Xiao S: Inhibition of endothelial Slit2/Robo1 signaling by thalidomide restrains angiogenesis by blocking the PI3K/Akt pathway. Dig Dis Sci. 59:2958–2966. 2014. View Article : Google Scholar : PubMed/NCBI | |
Segers J, Di Fazio V, Ansiaux R, Martinive P, Feron O, Wallemacq P and Gallez B: Potentiation of cyclophosphamide chemotherapy using the anti-angiogenic drug thalidomide: importance of optimal scheduling to exploit the 'normalization' window of the tumor vasculature. Cancer Lett. 244:129–135. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lebrin F, Srun S, Raymond K, Martin S, van den Brink S, Freitas C, Bréant C, Mathivet T, Larrivée B, Thomas JL, et al: Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat Med. 16:420–428. 2010. View Article : Google Scholar : PubMed/NCBI | |
Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D and Jain RK: Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev. 91:1071–1121. 2011. View Article : Google Scholar : PubMed/NCBI | |
Floros T and Tarhini AA: Anticancer cytokines: biology and clinical effects of Interferon-α2, Interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin Oncol. 42:539–548. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T, Munshi NC, Treon SP and Anderson KC: Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood. 99:4525–4530. 2002. View Article : Google Scholar : PubMed/NCBI | |
Marriott JB, Clarke IA, Czajka A, Dredge K, Childs K, Man HW, Schafer P, Govinda S, Muller GW, Stirling DI and Dalgleish AG: A novel subclass of thalidomide analogue with anti-solid tumor activity in which caspase-dependent apoptosis is associated with altered expression of bcl-2 family proteins. Cancer Res. 63:593–599. 2003.PubMed/NCBI | |
Schuster SR, Kortuem KM, Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Ahmann G, Kumar S, Rajkumar SV, et al: The clinical significance of cereblon expression in multiple myeloma. Leuk Res. 38:23–28. 2014. View Article : Google Scholar : | |
Chung AS, Lee J and Ferrara N: Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 10:505–514. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sitkovsky MV, Kjaergaard J, Lukashev D and Ohta A: Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res. 14:5947–5952. 2008. View Article : Google Scholar : PubMed/NCBI | |
Palazon A, Aragones J, Morales-Kastresana A, de Landazuri MO and Melero I: Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin Cancer Res. 18:1207–1213. 2012. View Article : Google Scholar | |
Huang Y, Goel S, Duda DG, Fukumura D and Jain RK: Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res. 73:2943–2948. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hamzah J, Jugold M, Kiessling F, Rigby P, Manzur M, Marti HH, Rabie T, Kaden S, Gröne HJ, Hämmerling GJ, et al: Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature. 453:410–414. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rolny C, Mazzone M, Tugues S, Laoui D, Johansson I, Coulon C, Squadrito ML, Segura I, Li X, Knevels E, et al: HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell. 19:31–44. 2011. View Article : Google Scholar : PubMed/NCBI | |
Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 10:942–949. 2004. View Article : Google Scholar : PubMed/NCBI | |
Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 313:1960–1964. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tan TT and Coussens LM: Humoral immunity, inflammation and cancer. Curr Opin Immunol. 19:209–216. 2007. View Article : Google Scholar : PubMed/NCBI | |
Galustian C, Meyer B, Labarthe MC, Dredge K, Klaschka D, Henry J, Todryk S, Chen R, Muller G, Stirling D, et al: The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother. 58:1033–1045. 2009. View Article : Google Scholar | |
Hanahan D and Weinberg RA: Hallmarks of cancer: the next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
de Visser KE and Coussens LM: The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol. 13:118–137. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN and Pollard JW: Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66:11238–11246. 2006. View Article : Google Scholar : PubMed/NCBI | |
Murdoch C, Giannoudis A and Lewis CE: Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood. 104:2224–2234. 2004. View Article : Google Scholar : PubMed/NCBI | |
Murdoch C, Muthana M, Coffelt SB and Lewis CE: The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 8:618–631. 2008. View Article : Google Scholar : PubMed/NCBI | |
Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M and Lewis CE: Expression of HIF-1alpha by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol. 196:204–212. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lewis CE and Pollard JW: Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66:605–612. 2006. View Article : Google Scholar : PubMed/NCBI | |
Murdoch C and Lewis CE: Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer. 117:701–708. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee HS, Kwon HS, Park DE, Woo YD, Kim HY, Kim HR, Cho SH, Min KU, Kang HR and Chang YS: Thalidomide inhibits alternative activation of macrophages in vivo and in vitro: a potential mechanism of anti-asthmatic effect of thalidomide. PLoS One. 10:e01230942015. View Article : Google Scholar : PubMed/NCBI | |
Bruno A, Focaccetti C, Pagani A, Imperatori AS, Spagnoletti M, Rotolo N, Cantelmo AR, Franzi F, Capella C, Ferlazzo G, et al: The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia. 15:133–142. 2013. View Article : Google Scholar : PubMed/NCBI | |
Haslett PA, Corral LG, Albert M and Kaplan G: Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J Exp Med. 187:1885–1892. 1998. View Article : Google Scholar : PubMed/NCBI | |
Pober JS, Gimbrone MA Jr, Cotran RS, Reiss CS, Burakoff SJ, Fiers W and Ault KA: Ia expression by vascular endothelium is inducible by activated T cells and by human gamma interferon. J Exp Med. 157:1339–1353. 1983. View Article : Google Scholar : PubMed/NCBI | |
Pober JS, Gimbrone MA Jr, Lapierre LA, Mendrick DL, Fiers W, Rothlein R and Springer TA: Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol. 137:1893–1896. 1986.PubMed/NCBI | |
Choi J, Enis DR, Koh KP, Shiao SL and Pober JS: T lymphocyte-endothelial cell interactions. Annu Rev Immunol. 22:683–709. 2004. View Article : Google Scholar : PubMed/NCBI | |
Trédan O, Lacroix-Triki M, Guiu S, Mouret-Reynier MA, Barrière J, Bidard FC, Braccini AL, Mir O, Villanueva C and Barthélémy P: Angiogenesis and tumor microenvironment: bevacizumab in the breast cancer model. Target Oncol. 10:189–198. 2015. View Article : Google Scholar | |
Rivas-Fuentes S, Salgado-Aguayo A, Pertuz Belloso S, Gorocica Rosete P, Alvarado-Vásquez N and Aquino-Jarquin G: Role of chemokines in non-small cell lung cancer: angiogenesis and inflammation. J Cancer. 6:938–952. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dirkx AE, Oude Egbrink MG, Wagstaff J and Griffioen AW: Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol. 80:1183–1196. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, et al: Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell. 131:463–475. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nakayama T, Yao L and Tosato G: Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest. 114:1317–1325. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stockmann C, Schadendorf D, Klose R and Helfrich I: The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol. 4:692014. View Article : Google Scholar : PubMed/NCBI | |
Jain RK: Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 26:605–622. 2014. View Article : Google Scholar : PubMed/NCBI |