1
|
Fuller GN and Scheithauer BW: The 2007
Revised World Health Organization (WHO) classification of tumours
of the central nervous system: newly codified entities. Brain
Pathol. 17:304–307. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Reifenberger G, Hentschel B, Felsberg J,
Schackert G, Simon M, Schnell O, Westphal M, Wick W, Pietsch T,
Loeffler M, et al German Glioma Network: Predictive impact of MGMT
promoter methylation in glioblastoma of the elderly. Int J Cancer.
131:1342–1350. 2012. View Article : Google Scholar
|
3
|
Grossman SA, Ye X, Piantadosi S, Desideri
S, Nabors LB and Rosenfeld M: Survival of patients with newly
diagnosed glioblastoma treated with radiation and temozolomide in
research studies in the United States. Clin Cancer Res.
16:2443–2449. 2010. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chinese Glioma Cooperative Group (CGCG);
Chinese Glioma Atlas (CGGA): Chinese Glioma Molecular Guidelines.
Chin J Neurosurg. 30:435–444. 2014.
|
6
|
Candolfi M, Kroeger KM, Muhammad AK, Yagiz
K, Farrokhi C, Pechnick RN, Lowenstein PR and Castro MG: Gene
therapy for brain cancer: combination therapies provide enhanced
efficacy and safety. Curr Gene Ther. 9:409–421. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nakada M, Niska JA, Tran NL, McDonough WS
and Berens ME: EphB2/R-Ras signaling regulates glioma cell
adhesion, growth, and invasion. Am J Pathol. 167:565–576. 2005.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Jeon BN, Yoo JY, Choi WI, Lee CE, Yoon HG
and Hur MW: Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses
transcription of the tumor suppressor Rb gene via binding
competition with Sp1 and recruitment of co-repressors. J Biol Chem.
283:33199–33210. 2008. View Article : Google Scholar : PubMed/NCBI
|
9
|
Westphal M and Lamszus K: The neurobiology
of gliomas: from cell biology to the development of therapeutic
approaches. Nat Rev Neurosci. 12:495–508. 2011. View Article : Google Scholar : PubMed/NCBI
|
10
|
Chen KH, Guo X, Ma D, Guo Y, Li Q, Yang D,
Li P, Qiu X, Wen S, Xiao RP and Tang J: Dysregulation of HSG
triggers vascular proliferative disorders. Nat Cell Biol.
6:872–883. 2004. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Guo X, Chen KH, Guo Y, Liao H, Tang J and
Xiao RP: Mitofusin 2 triggers vascular smooth muscle cell apoptosis
via mitochondrial death pathway. Circ Res. 101:1113–1122. 2007.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Wu M, Chen Q, Li D, Li X, Li X, Huang C,
Tang Y, Zhou Y, Wang D, Tang K, et al: LRRC4 inhibits human
glioblastoma cells proliferation, invasion, and proMMP-2 activation
by reducing SDF-1 alpha/CXCR4-mediated ERK1/2 and Akt signaling
pathways. J Cell Biochem. 103:245–255. 2008. View Article : Google Scholar
|
13
|
Wu M, Huang C, Li X, Li X, Gan K, Chen Q,
Tang Y, Tang K, Shen S and Li G: LRRC4 inhibits glioblastoma cell
proliferation, migration, and angiogenesis by downregulating
pleiotropic cytokine expression and responses. J Cell Physiol.
214:65–74. 2008. View Article : Google Scholar
|
14
|
Kunapuli P, Kasyapa CS, Hawthorn L and
Cowell JK: LGI1, a putative tumor metastasis suppressor gene,
controls in vitro invasiveness and expression of matrix
metalloproteinases in glioma cells through the ERK1/2 pathway. J
Biol Chem. 279:23151–23157. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bhaskara VK, Sundaram C and Babu PP: pERK,
pAkt and pBad: a possible role in cell proliferation and sustained
cellular survival during tumorigenesis and tumor progression in ENU
induced transplacental glioma rat model. Neurochem Res.
31:1163–1170. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cuevas P, Diaz-González D, Carceller F and
Dujovny M: Dual blockade of mitogen-activated protein kinases ERK-1
(p42) and ERK-2 (p44) and cyclic AMP response element binding
protein (CREB) by neomycin inhibits glioma cell proliferation.
Neurol Res. 25:13–16. 2003. View Article : Google Scholar : PubMed/NCBI
|
17
|
Belsey MJ, Davies AR, Witchel HJ and
Kozlowski RZ: Inhibition of ERK and JNK decreases both
osmosensitive taurine release and cell proliferation in glioma
cells. Neurochem Res. 32:1940–1949. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Betti M, Minelli A, Canonico B, Castaldo
P, Magi S, Aisa MC, Piroddi M, Di Tomaso V and Galli F:
Antiproliferative effects of tocopherols (vitamin E) on murine
glioma C6 cells: homologue-specific control of PKC/ERK and cyclin
signaling. Free Radic Biol Med. 41:464–472. 2006. View Article : Google Scholar : PubMed/NCBI
|
19
|
McDaid HM, Lopez-Barcons L, Grossman A,
Lia M, Keller S, Pérez-Soler R and Horwitz SB: Enhancement of the
therapeutic efficacy of taxol by the mitogen-activated protein
kinase kinase inhibitor CI-1040 in nude mice bearing human
heterotransplants. Cancer Res. 65:2854–2860. 2005. View Article : Google Scholar : PubMed/NCBI
|
20
|
Knobbe CB, Trampe-Kieslich A and
Reifenberger G: Genetic alteration and expression of the
phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human
glioblastomas. Neuropathol Appl Neurobiol. 31:486–490. 2005.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Gao P, Jiang S, Guo H, Yang Q, Fang Z,
Zhao W and Shen B: Expression and mechanism of rat hyperplasia
suppressor gene suppressing growth of rat C6 glioma cells. J Third
Mil Med Univ. 36:381–385. 2014.
|
22
|
Jin B, Fu G, Pan H, Cheng X, Zhou L, Lv J,
Chen G and Zheng S: Anti-tumour efficacy of mitofusin-2 in urinary
bladder carcinoma. Med Oncol. 28(Suppl 1): S373–S380. 2011.
View Article : Google Scholar
|
23
|
Wang W, Lu J, Zhu F, Wei J, Jia C, Zhang
Y, Zhou L, Xie H and Zheng S: Pro-apoptotic and anti-proliferative
effects of mitofusin-2 via Bax signaling in hepatocellular
carcinoma cells. Med Oncol. 29:70–76. 2012. View Article : Google Scholar
|
24
|
Gagné JP, Moreel X, Gagné P, Labelle Y,
Droit A, Chevalier-Paré M, Bourassa S, McDonald D, Hendzel MJ,
Prigent C and Poirier GG: Proteomic investigation of
phosphorylation sites in poly(ADP-ribose) polymerase-1 and
poly(ADP-ribose) glycohydrolase. J Proteome Res. 8:1014–1029. 2009.
View Article : Google Scholar
|
25
|
Reed AM, Fishel ML and Kelley MR:
Small-molecule inhibitors of proteins involved in base excision
repair potentiate the anti-tumorigenic effect of existing
chemotherapeutics and irradiation. Future Oncol. 5:713–726. 2009.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Atorino L, Di Meglio S, Farina B, Jones R
and Quesada P: Rat germinal cells require PARP for repair of DNA
damage induced by gamma-irradiation and H2O2
treatment. Eur J Cell Biol. 80:222–229. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Thornberry NA and Lazebnik Y: Caspases:
enemies within. Science. 281:1312–1316. 1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kato J, Kuwabara Y, Mitani M, Shinoda N,
Sato A, Toyama T, Mitsui A, Nishiwaki T, Moriyama S, Kudo J and
Fujii Y: Expression of survivin in esophageal cancer: correlation
with the prognosis and response to chemotherapy. Int J Cancer.
95:92–95. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Altieri DC: Survivin, versatile modulation
of cell division and apoptosis in cancer. Oncogene. 22:8581–8589.
2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Beardsmore DM, Verbeke CS, Davies CL,
Guillou PJ and Clark GW: Apoptotic and proliferative indexes in
esophageal cancer: predictors of response to neoadjuvant therapy
[corrected]. J Gastrointest Surg. 7:77–86. 2003. View Article : Google Scholar
|
31
|
Kelly RJ, Lopez-Chavez A, Citrin D, Janik
JE and Morris JC: Impacting tumor cell-fate by targeting the
inhibitor of apoptosis protein survivin. Mol Cancer. 10:352011.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Tamm I, Wang Y, Sausville E, Scudiero DA,
Vigna N, Oltersdorf T and Reed JC: IAP-family protein survivin
inhibits caspase activity and apoptosis induced by Fas (CD95), Bax,
caspases, and anticancer drugs. Cancer Res. 58:5315–5320.
1998.PubMed/NCBI
|
33
|
Boucher MJ, Morisset J, Vachon PH, Reed
JC, Lainé J and Rivard N: MEK/ERK signaling pathway regulates the
expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of
human pancreatic cancer cells. J Cell Biochem. 79:355–369. 2000.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Buder-Hoffmann S, Palmer C, Vacek P,
Taatjes D and Mossman B: Different accumulation of activated
extracellular signal-regulated kinases (ERK 1/2) and role in
cell-cycle alterations by epidermal growth factor, hydrogen
peroxide, or asbestos in pulmonary epithelial cells. Am J Respir
Cell Mol Biol. 24:405–413. 2001. View Article : Google Scholar : PubMed/NCBI
|
35
|
Neri LM, Borgatti P, Capitani S and
Martelli AM: The nuclear phosphoinositide 3-kinase/AKT pathway: a
new second messenger system. Biochim Biophys Acta. 1584:73–80.
2002. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ueki K, Fruman DA, Brachmann SM, Tseng YH,
Cantley LC and Kahn CR: Molecular balance between the regulatory
and catalytic subunits of phosphoinositide 3-kinase regulates cell
signaling and survival. Mol Cell Biol. 22:965–977. 2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wymann MP and Pirola L: Structure and
function of phosphoinositide 3-kinases. Biochim Biophys Acta.
1436:127–150. 1998. View Article : Google Scholar : PubMed/NCBI
|
38
|
Khokhlatchev AV, Canagarajah B, Wilsbacher
J, Robinson M, Atkinson M, Goldsmith E and Cobb MH: Phosphorylation
of the MAP kinase ERK2 promotes its homodimerization and nuclear
translocation. Cell. 93:605–615. 1998. View Article : Google Scholar : PubMed/NCBI
|
39
|
Párrizas M, Saltiel AR and LeRoith D:
Insulin-like growth factor 1 inhibits apoptosis using the
phosphatidylinositol 3′-kinase and mitogen-activated protein kinase
pathways. J Biol Chem. 272:154–161. 1997. View Article : Google Scholar
|
40
|
Kenchappa P, Yadav A, Singh G, Nandana S
and Banerjee K: Rescue of TNFalpha-inhibited neuronal cells by
IGF-1 involves Akt and c-Jun N-terminal kinases. J Neurosci Res.
76:466–474. 2004. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bencomo E, Pérez R, Arteaga MF, Acosta E,
Peña O, Lopez L, Avila J and Palumbo A: Apoptosis of cultured
granulosa-lutein cells is reduced by insulin-like growth factor I
and may correlate with embryo fragmentation and pregnancy rate.
Fertil Steril. 85:474–480. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gao P, Wang Z, Zhang B, Zou Y, Guo H, Liu
H, Yang Q, Fang Z, Jiang S, Shen B, et al: Suppression of C6
gliomas via application of rat hyperplasia gene. Int J Biol
Markers. 29:e411–e422. 2014. View Article : Google Scholar : PubMed/NCBI
|