Sphingosine 1-phosphate in metabolic syndrome (Review)
- Authors:
- Wei Chen
- Hongwei Lu
- Jie Yang
- Hong Xiang
- Hui Peng
-
Affiliations: Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China, Center for Experimental Medical Research, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China - Published online on: September 7, 2016 https://doi.org/10.3892/ijmm.2016.2731
- Pages: 1030-1038
This article is mentioned in:
Abstract
Alberti KG and Zimmet PZ: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 15:539–553. 1998. View Article : Google Scholar : PubMed/NCBI | |
Balkau B and Charles MA: Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med. 16:442–443. 1999. View Article : Google Scholar : PubMed/NCBI | |
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults: Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA. 285:2486–2497. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bloomgarden ZT: American Association of Clinical Endocrinologists (AACE) consensus conference on the insulin resistance syndrome: 25–26 August 2002, Washington, DC. Diabetes Care. 26:933–939. 2003. View Article : Google Scholar : PubMed/NCBI | |
Alberti KG and Zimmet P: The metabolic syndrome - a new worldwide definition. Lancet. 366:1059–1062. 2005. View Article : Google Scholar : PubMed/NCBI | |
Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM and Smith SC Jr; International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity: Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 120:1640–1645. 2009. View Article : Google Scholar : PubMed/NCBI | |
Beltrán-Sánchez H, Harhay MO, Harhay MM and McElligott S: Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J Am Coll Cardiol. 62:697–703. 2013. View Article : Google Scholar | |
Liu M, Wang J, Jiang B, Sun D, Wu L, Yang S, Wang Y, Li X and He Y: Increasing prevalence of metabolic syndrome in a Chinese elderly population: 2001–2010. PLoS One. 8:e662332013. View Article : Google Scholar | |
Wilson PW, D'Agostino RB, Parise H, Sullivan L and Meigs JB: Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 112:3066–3072. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mendonça FM, de Sousa FR, Barbosa AL, Martins SC, Araújo RL, Soares R and Abreu C: Metabolic syndrome and risk of cancer: Which link? Metabolism. 64:182–189. 2015. View Article : Google Scholar | |
Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL and Eisenberg MJ: The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 56:1113–1132. 2010. View Article : Google Scholar : PubMed/NCBI | |
Esposito K, Chiodini P, Capuano A, Bellastella G, Maiorino MI, Rafaniello C, Panagiotakos DB and Giugliano D: Colorectal cancer association with metabolic syndrome and its components: a systematic review with meta-analysis. Endocrine. 44:634–647. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blaho VA and Hla T: Regulation of mammalian physiology, development, and disease by the sphingosine 1-phosphate and lysophosphatidic acid receptors. Chem Rev. 111:6299–6320. 2011. View Article : Google Scholar : PubMed/NCBI | |
Maceyka M and Spiegel S: Sphingolipid metabolites in inflammatory disease. Nature. 510:58–67. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chan H and Pitson SM: Post-translational regulation of sphingosine kinases. Biochim Biophys Acta. 1831:147–156. 2013. View Article : Google Scholar | |
Escalante-Alcalde D, Hernandez L, Le Stunff H, Maeda R, Lee HS, Gang-Cheng Jr, Sciorra VA, Daar I, Spiegel S, Morris AJ and Stewart CL: The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning. Development. 130:4623–4637. 2003. View Article : Google Scholar : PubMed/NCBI | |
Knapp M, Lisowska A, Zabielski P, Musiał W and Baranowski M: Sustained decrease in plasma sphingosine-1-phosphate concentration and its accumulation in blood cells in acute myocardial infarction. Prostaglandins Other Lipid Mediat. 106:53–61. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baranowski M, Charmas M, Długołęcka B and Górski J: Exercise increases plasma levels of sphingoid base-1 phosphates in humans. Acta Physiol (Oxf). 203:373–380. 2011. View Article : Google Scholar | |
Knapp M, Baranowski M, Lisowska A and Musiał W: Decreased free sphingoid base concentration in the plasma of patients with chronic systolic heart failure. Adv Med Sci. 57:100–105. 2012. View Article : Google Scholar : PubMed/NCBI | |
Knapp M, Lisowska A, Knapp P and Baranowski M: Dose-dependent effect of aspirin on the level of sphingolipids in human blood. Adv Med Sci. 58:274–281. 2013. View Article : Google Scholar : PubMed/NCBI | |
Baranowski M, Górski J, Klapcinska B, Waskiewicz Z and Sadowska-Krepa E: Ultramarathon run markedly reduces plasma sphingosine-1-phosphate concentration. Int J Sport Nutr Exerc Metab. 24:148–156. 2014. View Article : Google Scholar | |
Pappu R, Schwab SR, Cornelissen I, Pereira JP, Regard JB, Xu Y, Camerer E, Zheng YW, Huang Y, Cyster JG and Coughlin SR: Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 316:295–298. 2007. View Article : Google Scholar : PubMed/NCBI | |
Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, Parikh NS, Habrukowich C and Hla T: Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ Res. 102:669–676. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pham TH, Baluk P, Xu Y, Grigorova I, Bankovich AJ, Pappu R, Coughlin SR, McDonald DM, Schwab SR and Cyster JG: Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med. 207:17–27. 2010. View Article : Google Scholar : | |
Mendoza A, Bréart B, Ramos-Perez WD, Pitt LA, Gobert M, Sunkara M, Lafaille JJ, Morris AJ and Schwab SR: The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate. Cell Rep. 2:1104–1110. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fukuhara S, Simmons S, Kawamura S, Inoue A, Orba Y, Tokudome T, Sunden Y, Arai Y, Moriwaki K, Ishida J, et al: The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J Clin Invest. 122:1416–1426. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi N, Kobayashi N, Yamaguchi A and Nishi T: Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J Biol Chem. 284:21192–21200. 2009. View Article : Google Scholar : PubMed/NCBI | |
Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnström J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB and Dahlbäck B: Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci USA. 108:9613–9618. 2011. View Article : Google Scholar : PubMed/NCBI | |
Okajima F: Plasma lipoproteins behave as carriers of extracellular sphingosine 1-phosphate: is this an atherogenic mediator or an antiatherogenic mediator? Biochim Biophys Acta. 1582:132–137. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, Spiegel S and Hla T: Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science. 279:1552–1555. 1998. View Article : Google Scholar : PubMed/NCBI | |
Rosen H, Stevens RC, Hanson M, Roberts E and Oldstone MB: Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu Rev Biochem. 82:637–662. 2013. View Article : Google Scholar : PubMed/NCBI | |
Windh RT, Lee MJ, Hla T, An S, Barr AJ and Manning DR: Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J Biol Chem. 274:27351–27358. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yamazaki Y, Kon J, Sato K, Tomura H, Sato M, Yoneya T, Okazaki H, Okajima F and Ohta H: Edg-6 as a putative sphingosine 1-phosphate receptor coupling to Ca(2+) signaling pathway. Biochem Biophys Res Commun. 268:583–589. 2000. View Article : Google Scholar : PubMed/NCBI | |
Im DS, Heise CE, Ancellin N, O'Dowd BF, Shei GJ, Heavens RP, Rigby MR, Hla T, Mandala S, McAllister G, et al: Characterization of a novel sphingosine 1-phosphate receptor, Edg-8. J Biol Chem. 275:14281–14286. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ye D and Lin F: S1pr2/Gα13 signaling controls myocardial migration by regulating endoderm convergence. Development. 140:789–799. 2013. View Article : Google Scholar : PubMed/NCBI | |
Singleton PA, Dudek SM, Chiang ET and Garcia JG: Regulation of sphingosine 1-phosphate-induced endothelial cytoskeletal rearrangement and barrier enhancement by S1P1 receptor, PI3 kinase, Tiam1/Rac1, and alpha-actinin. FASEB J. 19:1646–1656. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ishimaru N, Yamada A, Nitta T, Arakaki R, Lipp M, Takahama Y and Hayashi Y: CCR7 with S1P1 signaling through AP-1 for migration of Foxp3+ regulatory T-cells controls autoimmune exocrinopathy. Am J Pathol. 180:199–208. 2012. View Article : Google Scholar | |
Mendelson K, Evans T and Hla T: Sphingosine 1-phosphate signalling. Development. 141:5–9. 2014. View Article : Google Scholar : | |
Waeber C; Sphingosine 1-phosphate (S1P) signaling and the vasculature: Lysophospholipid Receptors: Signaling and Biochemistry. Chun J, Hla T, Spiegel S and Moolenaar W: John Wiley and Sons, Inc; Hoboken, NJ: pp. 313–347. 2013, View Article : Google Scholar | |
Parham KA, Zebol JR, Tooley KL, Sun WY, Moldenhauer LM, Cockshell MP, Gliddon BL, Moretti PA, Tigyi G, Pitson SM and Bonder CS: Sphingosine 1-phosphate is a ligand for peroxisome proliferator-activated receptor-γ that regulates neoangiogenesis. FASEB J. 29:3638–3653. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S and Spiegel S: Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science. 325:1254–1257. 2009. View Article : Google Scholar : PubMed/NCBI | |
Strub GM, Paillard M, Liang J, Gomez L, Allegood JC, Hait NC, Maceyka M, Price MM, Chen Q, Simpson DC, et al: Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J. 25:600–612. 2011. View Article : Google Scholar : | |
Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T, et al: Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature. 465:1084–1088. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ito S, Iwaki S, Koike K, Yuda Y, Nagasaki A, Ohkawa R, Yatomi Y, Furumoto T, Tsutsui H, Sobel BE and Fujii S: Increased plasma sphingosine-1-phosphate in obese individuals and its capacity to increase the expression of plasminogen activator inhibitor-1 in adipocytes. Coron Artery Dis. 24:642–650. 2013.PubMed/NCBI | |
Kowalski GM, Carey AL, Selathurai A, Kingwell BA and Bruce CR: Plasma sphingosine-1-phosphate is elevated in obesity. PLoS One. 8:e724492013. View Article : Google Scholar : PubMed/NCBI | |
Silva VR, Micheletti TO, Pimentel GD, Katashima CK, Lenhare L, Morari J, Mendes MC, Razolli DS, Rocha GZ, de Souza CT, et al: Hypothalamic S1P/S1PR1 axis controls energy homeostasis. Nat Commun. 5:48592014. View Article : Google Scholar : PubMed/NCBI | |
Moon MH, Jeong JK, Lee YJ, Seol JW and Park SY: Sphingosine-1-phosphate inhibits the adipogenic differentiation of 3T3-L1 preadipocytes. Int J Mol Med. 34:1153–1158. 2014.PubMed/NCBI | |
Moon MH, Jeong JK, Lee JH, Park YG, Lee YJ, Seol JW and Park SY: Antiobesity activity of a sphingosine 1-phosphate analogue FTY720 observed in adipocytes and obese mouse model. Exp Mol Med. 44:603–614. 2012. View Article : Google Scholar : PubMed/NCBI | |
Esser N, Legrand-Poels S, Piette J, Scheen AJ and Paquot N: Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 105:141–150. 2014. View Article : Google Scholar : PubMed/NCBI | |
Majumdar I and Mastrandrea LD: Serum sphingolipids and inflammatory mediators in adolescents at risk for metabolic syndrome. Endocrine. 41:442–449. 2012. View Article : Google Scholar : PubMed/NCBI | |
Samad F, Hester KD, Yang G, Hannun YA and Bielawski J: Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 55:2579–2587. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Badeanlou L, Bielawski J, Ciaraldi TP and Samad F: Sphingosine kinase 1 regulates adipose proinflammatory responses and insulin resistance. Am J Physiol Endocrinol Metab. 306:E756–E768. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Chen J, Lay A, Don A, Vadas M and Xia P: Loss of sphingosine kinase 1 predisposes to the onset of diabetes via promoting pancreatic β-cell death in diet-induced obese mice. FASEB J. 27:4294–4304. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cantrell Stanford J, Morris AJ, Sunkara M, Popa GJ, Larson KL and Özcan S: Sphingosine 1-phosphate (S1P) regulates glucose-stimulated insulin secretion in pancreatic beta cells. J Biol Chem. 287:13457–13464. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bruce CR, Risis S, Babb JR, Yang C, Kowalski GM, Selathurai A, Lee-Young RS, Weir JM, Yoshioka K, Takuwa Y, et al: Overexpression of sphingosine kinase 1 prevents ceramide accumulation and ameliorates muscle insulin resistance in high-fat diet-fed mice. Diabetes. 61:3148–3155. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mikłosz A, Łukaszuk B, Baranowski M, Górski J and Chabowski A: Effects of inhibition of serine palmitoyltransferase (SPT) and sphingosine kinase 1 (SphK1) on palmitate induced insulin resistance in L6 myotubes. PLoS One. 8:e855472013. View Article : Google Scholar | |
Ma MM, Chen JL, Wang GG, Wang H, Lu Y, Li JF, Yi J, Yuan YJ, Zhang QW, Mi J, et al: Sphingosine kinase 1 participates in insulin signalling and regulates glucose metabolism and homeostasis in KK/Ay diabetic mice. Diabetologia. 50:891–900. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rapizzi E, Taddei ML, Fiaschi T, Donati C, Bruni P and Chiarugi P: Sphingosine 1-phosphate increases glucose uptake through trans-activation of insulin receptor. Cell Mol Life Sci. 66:3207–3218. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fayyaz S, Henkel J, Japtok L, Krämer S, Damm G, Seehofer D, Püschel GP and Kleuser B: Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P2 receptor subtype. Diabetologia. 57:373–382. 2014. View Article : Google Scholar | |
Randriamboavonjy V, Badenhoop K, Schmidt H, Geisslinger G, Fisslthaler B and Fleming I: The S1P(2) receptor expressed in human platelets is linked to the RhoA-Rho kinase pathway and is down regulated in type 2 diabetes. Basic Res Cardiol. 104:333–340. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Choi J, Zhao C and Ma ZA: FTY720 normalizes hyperglycemia by stimulating β-cell in vivo regeneration in db/db mice through regulation of cyclin D3 and p57(KIP2). J Biol Chem. 287:5562–5573. 2012. View Article : Google Scholar | |
Awad AS, Rouse MD, Khutsishvili K, Huang L, Bolton WK, Lynch KR and Okusa MD: Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes. Kidney Int. 79:1090–1098. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kawanabe T, Kawakami T, Yatomi Y, Shimada S and Soma Y: Sphingosine 1-phosphate accelerates wound healing in diabetic mice. J Dermatol Sci. 48:53–60. 2007. View Article : Google Scholar : PubMed/NCBI | |
El-Shewy HM, Sohn M, Wilson P, Lee MH, Hammad SM, Luttrell LM and Jaffa AA: Low-density lipoprotein induced expression of connective tissue growth factor via transactivation of sphingosine 1-phosphate receptors in mesangial cells. Mol Endocrinol. 26:833–845. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Lan T, Xie X, Huang K, Peng J, Huang J, Shen X, Liu P and Huang H: S1P2 receptor mediates sphingosine-1-phosphate-induced fibronectin expression via MAPK signaling pathway in mesangial cells under high glucose condition. Exp Cell Res. 318:936–943. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lan T, Liu W, Xie X, Xu S, Huang K, Peng J, Shen X, Liu P, Wang L, Xia P and Huang H: Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells. Mol Endocrinol. 25:2094–2105. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Peng H, Liu D, Ji L, Niu C, Ren J, Pan B, Hu J, Zheng L and Huang Y: High-density lipoprotein of patients with type 2 diabetes mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: relationship with HDL-associated sphingosine-1-phosphate. Cardiovasc Diabetol. 12:272013. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Lv P, Mathew AV, Liu D, Niu C, Wang Y, Ji L, Li J, Fu Z, Pan B, et al: The compensatory enrichment of sphingosine-1-phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus. Cardiovasc Diabetol. 13:822014. View Article : Google Scholar | |
Wang X, Zhang DM, Gu TT, Ding XQ, Fan CY, Zhu Q, Shi YW, Hong Y and Kong LD: Morin reduces hepatic inflammation-associated lipid accumulation in high fructose-fed rats via inhibiting sphingosine kinase 1/sphingosine 1-phosphate signaling pathway. Biochem Pharmacol. 86:1791–1804. 2013. View Article : Google Scholar : PubMed/NCBI | |
Son DJ, Lee HW, Shin HW, Lee JJ, Yoo HS, Kim TJ, Yun YP and Hong JT: Enhanced release of sphingosine-1-phosphate from hypercholesterolemic platelets: role in development of hypercholesterolemic atherosclerosis. Prostaglandins Leukot Essent Fatty Acids. 78:383–390. 2008. View Article : Google Scholar : PubMed/NCBI | |
Graham D, McBride MW, Gaasenbeek M, Gilday K, Beattie E, Miller WH, McClure JD, Polke JM, Montezano A, Touyz RM and Dominiczak AF: Candidate genes that determine response to salt in the stroke-prone spontaneously hypertensive rat: congenic analysis. Hypertension. 50:1134–1141. 2007. View Article : Google Scholar : PubMed/NCBI | |
Spijkers LJ, van den Akker RF, Janssen BJ, Debets JJ, De Mey JG, Stroes ES, van den Born BJ, Wijesinghe DS, Chalfant CE, MacAleese L, et al: Hypertension is associated with marked alterations in sphingolipid biology: a potential role for ceramide. PLoS One. 6:e218172011. View Article : Google Scholar : PubMed/NCBI | |
Dantas AP, Igarashi J and Michel T: Sphingosine 1-phosphate and control of vascular tone. Am J Physiol Heart Circ Physiol. 284:H2045–H2052. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fryer RM, Muthukumarana A, Harrison PC, Nodop Mazurek S, Chen RR, Harrington KE, Dinallo RM, Horan JC, Patnaude L, Modis LK and Reinhart GA: The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P1) and hypertension (S1P3) in rat. PLoS One. 7:e529852012. View Article : Google Scholar | |
Tosaka M, Okajima F, Hashiba Y, Saito N, Nagano T, Watanabe T, Kimura T and Sasaki T: Sphingosine 1-phosphate contracts canine basilar arteries in vitro and in vivo: possible role in pathogenesis of cerebral vasospasm. Stroke. 32:2913–2919. 2001. View Article : Google Scholar : PubMed/NCBI | |
Salomone S, Yoshimura S, Reuter U, Foley M, Thomas SS, Moskowitz MA and Waeber C: S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. Eur J Pharmacol. 469:125–134. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yogi A, Callera GE, Aranha AB, Antunes TT, Graham D, McBride M, Dominiczak A and Touyz RM: Sphingosine-1-phosphate-induced inflammation involves receptor tyrosine kinase transactivation in vascular cells: Upregulation in hypertension. Hypertension. 57:809–818. 2011. View Article : Google Scholar : PubMed/NCBI |