1
|
Barnes PJ, Brown MJ, Silverman M and
Dollery CT: Circulating catecholamines in exercise and
hyperventilation induced asthma. Thorax. 36:435–440. 1981.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Ind PW, Causon RC, Brown MJ and Barnes PJ:
Circulating catecholamines in acute asthma. Br Med J (Clin Res Ed).
290:267–269. 1985. View Article : Google Scholar
|
3
|
Wang J, Hu CP and Feng JT: Dysfunction of
releasing adrenaline in asthmatic adrenaline medullary chromaffin
cells due to functional redundancy primed by nerve growth factor.
Zhonghua Jie He He Hu Xi Za Zhi. 29:812–815. 2006.In Chinese.
|
4
|
Feng JT and Hu CP: Dysfunction of
releasing adrenaline in asthma by nerve growth factor. Med
Hypotheses. 65:1043–1046. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yamaguchi-Shima N, Okada S, Shimizu T,
Usui D, Nakamura K, Lu L and Yokotani K: Adrenal adrenaline- and
noradrena- line-containing cells and celiac sympathetic ganglia are
differentially controlled by centrally administered
corticotropin-releasing factor and arginine-vasopressin in rats.
Eur J Pharmacol. 564:94–102. 2007. View Article : Google Scholar : PubMed/NCBI
|
6
|
Fenster CP, Rains MF, Noerager B, Quick MW
and Lester RA: Influence of subunit composition on desensitization
of neuronal acetylcholine receptors at low concentrations of
nicotine. J Neurosci. 17:5747–5759. 1997.PubMed/NCBI
|
7
|
Fucile S: Ca2+ permeability of
nicotinic acetylcholine receptors. Cell Calcium. 35:1–8. 2004.
View Article : Google Scholar
|
8
|
Nai Q, McIntosh JM and Margiotta JF:
Relating neuronal nicotinic acetylcholine receptor subtypes defined
by subunit composition and channel function. Mol Pharmacol.
63:311–324. 2003. View Article : Google Scholar : PubMed/NCBI
|
9
|
Takahashi T, Yamashita H, Nakamura S,
Ishiguro H, Nagatsu T and Kawakami H: Effects of nerve growth
factor and nicotine on the expression of nicotinic acetylcholine
receptor subunits in C12 cells. Neurosci Res. 35:175–181. 1999.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Shin MK, Han W, Bevans-Fonti S, Jun JC,
Punjabi NM and Polotsky VY: The effect of adrenal medullectomy on
metabolic responses to chronic intermittent hypoxia. Respir Physiol
Neurobiol. 203:60–67. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Utsugisawa K, Nagane Y, Obara D and Tohgi
H: Increased expression of alpha7 nAChR after transient hypoxia in
C12 cells. Neuroreport. 11:2209–2212. 2000. View Article : Google Scholar : PubMed/NCBI
|
12
|
Rogers SW, Mandelzys A, Deneris ES, Cooper
E and Heinemann S: The expression of nicotinic acetylcholine
receptors by C12 cells treated with NGF. J Neurosci. 12:4611–4623.
1992.PubMed/NCBI
|
13
|
Dajas-Bailador F and Wonnacott S:
Nicotinic acetylcholine receptors and the regulation of neuronal
signalling. Trends Pharmacol Sci. 25:317–324. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fischer-Colbrie R, Eskay RL, Eiden LE and
Maas D: Transsynaptic regulation of galanin, neurotensin, and
substance P in the adrenal medulla: combinatorial control by
second-messenger signaling pathways. J Neurochem. 59:780–783. 1992.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Fischer-Colbrie R, Iacangelo A and Eiden
LE: Neural and humoral factors separately regulate neuropeptide Y,
enkephalin, and chromogranin A and B mRNA levels in rat adrenal
medulla. Proc Natl Acad Sci USA. 85:3240–3244. 1988. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gahring LC, Myers E, Palumbos S and Rogers
SW: Nicotinic receptor alpha7 expression during mouse adrenal gland
development. PLoS One. 9:e1038612014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Barnes P, FitzGerald G, Brown M and
Dollery C: Nocturnal asthma and changes in circulating epinephrine,
histamine, and cortisol. N Engl J Med. 303:263–267. 1980.
View Article : Google Scholar : PubMed/NCBI
|
18
|
van Aalderen WM, Postma DS, Koëter GH and
Knol K: Nocturnal airflow obstruction, histamine, and the autonomic
central nervous system in children with allergic asthma. Thorax.
46:366–371. 1991. View Article : Google Scholar : PubMed/NCBI
|
19
|
Bates ME, Clayton M, Calhoun W, Jarjour N,
Schrader L, Geiger K, Schultz T, Sedgwick J, Swenson C and Busse W:
Relationship of plasma epinephrine and circulating eosinophils to
nocturnal asthma. Am J Respir Crit Care Med. 149:667–672. 1994.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Bates JH, Rincon M and Irvin CG: Animal
models of asthma. Am J Physiol Lung Cell Mol Physiol.
297:L401–L410. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Reddy AT, Lakshmi SP and Reddy RC: Murine
model of allergen induced asthma. J Vis Exp. 63:e37712012.
|
22
|
Secor ER, Carson WF, Singh A, Pensa M,
Guernsey LA, Schramm CM and Thrall RS: Oral bromelain attenuates
inflammation in an ovalbumin-induced murine model of asthma. Evid
Based Complement Alternat Med. 5:61–69. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ahn JH, Kim CH, Kim YH, Kim SJ, Lee SY,
Kim YK, Kim KH, Moon HS, Song JS, Park SH, et al: Inflammatory and
remodeling events in asthma with chronic exposure to house dust
mites: a murine model. J Korean Med Sci. 22:1026–1033. 2007.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Johnson JR Jr, Wiley RE, Fattouh R,
Swirski FK, Gajewska BU, Coyle AJ, Gutierrez-Ramos JC, Ellis R,
Inman MD and Jordana M: Continuous exposure to house dust mite
elicits chronic airway inflammation and structural remodeling. Am J
Respir Crit Care Med. 169:378–385. 2004. View Article : Google Scholar
|
25
|
Jiang XB, Zhu Y and Yin KS: Reproduction
of severe asthma model in mice. Zhongguo Wei Zhong Bing Ji Jiu Yi
Xue. 18:733–736. 2006.In Chinese. PubMed/NCBI
|
26
|
Hu CP, Zou YQ, Feng JT and Li XZ: The
effect of unilateral adrenalectomy on transformation of adrenal
medullary chromaffin cells in vivo: a potential mechanism of asthma
pathogenesis. PLoS One. 7:e445862012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Hu CP, Zou JT, Zou YQ, Li XZ and Feng JT:
Kidney-tonifying recipe can repair alterations in adrenal medullary
chromaffin cells in asthmatic rats. Evid Based Complement Alternat
Med. 2012:5426212012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Feng JT, Wu XM, Li XZ, Zou YQ, Qin L and
Hu CP: Transformation of adrenal medullary chromaffin cells
increases asthmatic susceptibility in pups from allergen-sensitized
rats. Respir Res. 13:992012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Morioka N, Tokuhara M, Nakamura Y,
Idenoshita Y, Harano S, Zhang FF, Hisaoka-Nakashima K and Nakata Y:
Primary cultures of rat cortical microglia treated with nicotine
increases in the expression of excitatory amino acid transporter 1
(GLAST) via the activation of the α7 nicotinic acetylcholine
receptor. Neuroscience. 258:374–384. 2014. View Article : Google Scholar
|
30
|
O'Neill MJ, Murray TK, Lakics V, Visanji
NP and Duty S: The role of neuronal nicotinic acetylcholine
receptors in acute and chronic neurodegeneration. Curr Drug Targets
CNS Neurol Disord. 1:399–411. 2002. View Article : Google Scholar
|
31
|
Vicens P, Ribes D, Heredia L, Torrente M
and Domingo JL: Effects of an alpha7 nicotinic receptor agonist and
stress on spatial memory in an animal model of Alzheimer's disease.
Biomed Res Int. 2013:9527192013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Han Z, Shen F, He Y, Degos V, Camus M,
Maze M, Young WL and Su H: Correction: activation of α-7 nicotinic
acetylcholine receptor reduces ischemic stroke injury through
reduction of pro-inflammatory macrophages and oxidative stress.
PLoS One. 11:e01522182016. View Article : Google Scholar
|
33
|
Bodnar AL, Cortes-Burgos LA, Cook KK, Dinh
DM, Groppi VE, Hajos M, Higdon NR, Hoffmann WE, Hurst RS, Myers JK,
et al: Discovery and structure-activity relationship of
quinuclidine benzamides as agonists of alpha7 nicotinic
acetylcholine receptors. J Med Chem. 48:905–908. 2005. View Article : Google Scholar : PubMed/NCBI
|