The role of sphingolipid signalling in diabetes‑associated pathologies (Review)
- Authors:
- Mei Li Ng
- Carol Wadham
- Olga A. Sukocheva
-
Affiliations: Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW 2050, Australia, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, NSW 2031, Australia, School of Social Health Sciences, Flinders University, Bedford Park, SA 5042, Australia - Published online on: January 11, 2017 https://doi.org/10.3892/ijmm.2017.2855
- Pages: 243-252
-
Copyright: © Ng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, et al: Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose): National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet. 378:31–40. 2011. View Article : Google Scholar : PubMed/NCBI | |
Expert Committee on the Diagnosis and Classification of Diabetes Mellitus: Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 26(Suppl 1): S5–S20. 2003. View Article : Google Scholar | |
Shao S, Yang Y, Yuan G, Zhang M and Yu X: Signaling molecules involved in lipid-induced pancreatic beta-cell dysfunction. DNA Cell Biol. 32:41–49. 2013. View Article : Google Scholar : PubMed/NCBI | |
Newsholme P, Keane D, Welters HJ and Morgan NG: Life and death decisions of the pancreatic beta-cell: The role of fatty acids. Clin Sci (Lond). 112:27–42. 2007. View Article : Google Scholar | |
Alemany R, van Koppen CJ, Danneberg K, Ter Braak M and Meyer zu Heringdorf D: Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol. 374:413–428. 2007. View Article : Google Scholar : PubMed/NCBI | |
Van Brocklyn JR, Lee MJ, Menzeleev R, Olivera A, Edsall L, Cuvillier O, Thomas DM, Coopman PJ, Thangada S, Liu CH, et al: Dual actions of sphingosine-1-phosphate: Extracellular through the Gi-coupled receptor Edg-1 and intracellular to regulate proliferation and survival. J Cell Biol. 142:229–240. 1998. View Article : Google Scholar : PubMed/NCBI | |
Olivera A and Spiegel S: Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature. 365:557–560. 1993. View Article : Google Scholar : PubMed/NCBI | |
Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S and Spiegel S: Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 381:800–803. 1996. View Article : Google Scholar : PubMed/NCBI | |
Pyne S, Chapman J, Steele L and Pyne NJ: Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. Eur J Biochem. 237:819–826. 1996. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Chen J, Lay A, Don A, Vadas M and Xia P: Loss of sphingosine kinase 1 predisposes to the onset of diabetes via promoting pancreatic β-cell death in diet-induced obese mice. FASEB J. 27:4294–4304. 2013. View Article : Google Scholar : PubMed/NCBI | |
Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, et al: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5:167–179. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bruce CR, Risis S, Babb JR, Yang C, Kowalski GM, Selathurai A, Lee-Young RS, Weir JM, Yoshioka K, Takuwa Y, et al: Overexpression of sphingosine kinase 1 prevents ceramide accumulation and ameliorates muscle insulin resistance in high-fat diet-fed mice. Diabetes. 61:3148–3155. 2012. View Article : Google Scholar : PubMed/NCBI | |
Spiegel S and Milstien S: The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol. 11:403–415. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pyne S and Pyne NJ: Translational aspects of sphingosine 1-phosphate biology. Trends Mol Med. 17:463–472. 2011. View Article : Google Scholar : PubMed/NCBI | |
Maceyka M and Spiegel S: Sphingolipid metabolites in inflammatory disease. Nature. 510:58–67. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mendelson K, Evans T and Hla T: Sphingosine 1-phosphate signalling. Development. 141:5–9. 2014. View Article : Google Scholar : | |
Hla T and Dannenberg AJ: Sphingolipid signaling in metabolic disorders. Cell Metab. 16:420–434. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pitson SM: Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci. 36:97–107. 2011. View Article : Google Scholar | |
Don AS and Rosen H: A lipid binding domain in sphingosine kinase 2. Biochem Biophys Res Commun. 380:87–92. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barr RK, Lynn HE, Moretti PA, Khew-Goodall Y and Pitson SM: Deactivation of sphingosine kinase 1 by protein phosphatase 2A. J Biol Chem. 283:34994–35002. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sutherland CM, Moretti PA, Hewitt NM, Bagley CJ, Vadas MA and Pitson SM: The calmodulin-binding site of sphingosine kinase and its role in agonist-dependent translocation of sphingosine kinase 1 to the plasma membrane. J Biol Chem. 281:11693–11701. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hait NC, Allegood J, Maceyka M, Strub GM, Harikumar KB, Singh SK, Luo C, Marmorstein R, Kordula T, Milstien S and Spiegel S: Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science. 325:1254–1257. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wattenberg BW, Pitson SM and Raben DM: The sphingosine and diacylglycerol kinase superfamily of signaling kinases: Localization as a key to signaling function. J Lipid Res. 47:1128–1139. 2006. View Article : Google Scholar : PubMed/NCBI | |
Leclercq TM and Pitson SM: Cellular signalling by sphingosine kinase and sphingosine 1-phosphate. IUBMB Life. 58:467–472. 2006. View Article : Google Scholar : PubMed/NCBI | |
Giussani P, Maceyka M, Le Stunff H, Mikami A, Lépine S, Wang E, Kelly S, Merrill AH Jr, Milstien S and Spiegel S: Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-golgi trafficking of ceramide. Mol Cell Biol. 26:5055–5069. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pitson SM, Moretti PA, Zebol JR, Lynn HE, Xia P, Vadas MA and Wattenberg BW: Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22:5491–5500. 2003. View Article : Google Scholar : PubMed/NCBI | |
Stahelin RV, Hwang JH, Kim JH, Park ZY, Johnson KR, Obeid LM and Cho W: The mechanism of membrane targeting of human sphingosine kinase 1. J Biol Chem. 280:43030–43038. 2005. View Article : Google Scholar : PubMed/NCBI | |
Siow D and Wattenberg B: The compartmentalization and trans-location of the sphingosine kinases: Mechanisms and functions in cell signaling and sphingolipid metabolism. Crit Rev Biochem Mol Biol. 46:365–375. 2011. View Article : Google Scholar : PubMed/NCBI | |
Maceyka M, Sankala H, Hait NC, Le Stunff H, Liu H, Toman R, Collier C, Zhang M, Satin LS, Merrill AH Jr, et al: SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J Biol Chem. 280:37118–37129. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ding G, Sonoda H, Yu H, Kajimoto T, Goparaju SK, Jahangeer S, Okada T and Nakamura S: Protein kinase D-mediated phosphorylation and nuclear export of sphingosine kinase 2. J Biol Chem. 282:27493–27502. 2007. View Article : Google Scholar : PubMed/NCBI | |
Igarashi N, Okada T, Hayashi S, Fujita T, Jahangeer S and Nakamura S: Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J Biol Chem. 278:46832–46839. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hait NC, Bellamy A, Milstien S, Kordula T and Spiegel S: Sphingosine kinase type 2 activation by ERK-mediated phosphorylation. J Biol Chem. 282:12058–12065. 2007. View Article : Google Scholar : PubMed/NCBI | |
Alvarez SE, Milstien S and Spiegel S: Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab. 18:300–307. 2007. View Article : Google Scholar : PubMed/NCBI | |
Strub GM, Maceyka M, Hait NC, Milstien S and Spiegel S: Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol. 688:141–155. 2010. View Article : Google Scholar : PubMed/NCBI | |
Venkataraman K, Thangada S, Michaud J, Oo ML, Ai Y, Lee YM, Wu M, Parikh NS, Khan F, Proia RL and Hla T: Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochem J. 397:461–471. 2006. View Article : Google Scholar : PubMed/NCBI | |
Maceyka M, Harikumar KB, Milstien S and Spiegel S: Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 22:50–60. 2012. View Article : Google Scholar : | |
Xia P, Wang L, Moretti PA, Albanese N, Chai F, Pitson SM, D'Andrea RJ, Gamble JR and Vadas MA: Sphingosine kinase interacts with TRAF2 and dissects tumor necrosis factor-alpha signaling. J Biol Chem. 277:7996–8003. 2002. View Article : Google Scholar : PubMed/NCBI | |
Artal-Sanz M and Tavernarakis N: Prohibitin and mitochondrial biology. Trends Endocrinol Metab. 20:394–401. 2009. View Article : Google Scholar : PubMed/NCBI | |
Parham KA, Zebol JR, Tooley KL, Sun WY, Moldenhauer LM, Cockshell MP, Gliddon BL, Moretti PA, Tigyi G, Pitson SM and Bonder CS: Sphingosine 1-phosphate is a ligand for peroxisome proliferator-activated receptor-γ that regulates neoangiogenesis. FASEB J. 29:3638–3653. 2015. View Article : Google Scholar : PubMed/NCBI | |
Panneer Selvam S, De Palma RM, Oaks JJ, Oleinik N, Peterson YK, Stahelin RV, Skordalakes E, Ponnusamy S, Garrett-Mayer E, Smith CD and Ogretmen B: Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation. Sci Signal. 8:ra582015. View Article : Google Scholar : PubMed/NCBI | |
Takasugi N, Sasaki T, Suzuki K, Osawa S, Isshiki H, Hori Y, Shimada N, Higo T, Yokoshima S, Fukuyama T, et al: BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. J Neurosci. 31:6850–6857. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pyne S, Adams DR and Pyne NJ: Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Prog Lipid Res. 62:93–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fox TE, Bewley MC, Unrath KA, Pedersen MM, Anderson RE, Jung DY, Jefferson LS, Kim JK, Bronson SK, Flanagan JM, et al: Circulating sphingolipid biomarkers in models of type 1 diabetes. J Lipid Res. 52:509–517. 2011. View Article : Google Scholar : | |
Tao C, Sifuentes A and Holland WL: Regulation of glucose and lipid homeostasis by adiponectin: Effects on hepatocytes, pancreatic β cells and adipocytes. Best Pract Res Clin Endocrinol Metab. 28:43–58. 2014. View Article : Google Scholar : PubMed/NCBI | |
Osawa Y, Seki E, Kodama Y, Suetsugu A, Miura K, Adachi M, Ito H, Shiratori Y, Banno Y, Olefsky JM, et al: Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through AKT activation and AMP-activated protein kinase suppression. FASEB J. 25:1133–1144. 2011. View Article : Google Scholar : | |
Kowalski GM, Kloehn J, Burch ML, Selathurai A, Hamley S, Bayol SA, Lamon S, Watt MJ, Lee-Young RS, McConville MJ and Bruce CR: Overexpression of sphingosine kinase 1 in liver reduces triglyceride content in mice fed a low but not high-fat diet. Biochim Biophys Acta. 1851:210–219. 2015. View Article : Google Scholar | |
Lee SY, Hong IK, Kim BR, Shim SM, Sung Lee J, Lee HY, Soo Choi C, Kim BK and Park TS: Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. Hepatology. 62:135–146. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boden G: Endoplasmic reticulum stress: Another link between obesity and insulin resistance/inflammation? Diabetes. 58:518–519. 2009. View Article : Google Scholar : PubMed/NCBI | |
Boslem E, Meikle PJ and Biden TJ: Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction. Islets. 4:177–187. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Shan X, Miao H, Lu Y, Xu J, You N, Liu C, Liao DF and Jin J: Acute activation of acid ceramidase affects cytokine-induced cytotoxicity in rat islet beta-cells. FEBS Lett. 583:2136–2141. 2009. View Article : Google Scholar : PubMed/NCBI | |
Maedler K, Oberholzer J, Bucher P, Spinas GA and Donath MY: Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 52:726–733. 2003. View Article : Google Scholar : PubMed/NCBI | |
Veluthakal R, Palanivel R, Zhao Y, McDonald P, Gruber S and Kowluru A: Ceramide induces mitochondrial abnormalities in insulin-secreting INS-1 cells: Potential mechanisms underlying ceramide-mediated metabolic dysfunction of the beta cell. Apoptosis. 10:841–850. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patané G, Boggi U, Piro S, Anello M, et al: Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 51:1437–1442. 2002. View Article : Google Scholar : PubMed/NCBI | |
Boslem E, MacIntosh G, Preston AM, Bartley C, Busch AK, Fuller M, Laybutt DR, Meikle PJ and Biden TJ: A lipidomic screen of palmitate-treated MIN6 β-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem J. 435:267–276. 2011. View Article : Google Scholar : PubMed/NCBI | |
Véret J, Coant N, Berdyshev EV, Skobeleva A, Therville N, Bailbé D, Gorshkova I, Natarajan V, Portha B and Le Stunff H: Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 β-cells. Biochem J. 438:177–189. 2011. View Article : Google Scholar | |
Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ and Poitout V: Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem. 278:30015–30021. 2003. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Qian Y, Xi X, Hu X, Zhu J and Han X: Blockage of ceramide metabolism exacerbates palmitate inhibition of pro-insulin gene expression in pancreatic beta-cells. Mol Cell Biochem. 338:283–290. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jessup CF, Bonder CS, Pitson SM and Coates PT: The sphingolipid rheostat: A potential target for improving pancreatic islet survival and function. Endocr Metab Immune Disord Drug Targets. 11:262–272. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shimizu H, Okajima F, Kimura T, Ohtani K, Tsuchiya T, Takahashi H, Kuwabara A, Tomura H, Sato K and Mori M: Sphingosine 1-phosphate stimulates insulin secretion in HIT-T 15 cells and mouse islets. Endocr J. 47:261–269. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rütti S, Ehses JA, Sibler RA, Prazak R, Rohrer L, Georgopoulos S, Meier DT, Niclauss N, Berney T, Donath MY, et al: Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology. 150:4521–4530. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mastrandrea LD, Sessanna SM and Laychock SG: Sphingosine kinase activity and sphingosine-1 phosphate production in rat pancreatic islets and INS-1 cells: Response to cytokines. Diabetes. 54:1429–1436. 2005. View Article : Google Scholar : PubMed/NCBI | |
Véret J, Coant N, Gorshkova IA, Giussani P, Fradet M, Riccitelli E, Skobeleva A, Goya J, Kassis N, Natarajan V, et al: Role of palmitate-induced sphingoid base-1-phosphate biosynthesis in INS-1 β-cell survival. Biochim Biophys Acta. 1831:251–262. 2013. View Article : Google Scholar | |
Zhao Z, Choi J, Zhao C and Ma ZA: FTY720 normalizes hyperglycemia by stimulating β-cell in vivo re-generation in db/db mice through regulation of cyclin D3 and p57 (KIP2). J Biol Chem. 287:5562–5573. 2012. View Article : Google Scholar | |
Cantrell Stanford J, Morris AJ, Sunkara M, Popa GJ, Larson KL and Özcan S: Sphingosine 1-phosphate (S1P) regulates glucose-stimulated insulin secretion in pancreatic beta cells. J Biol Chem. 287:13457–13464. 2012. View Article : Google Scholar : PubMed/NCBI | |
Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, Davis KE, Bikman BT, Halberg N, Rutkowski JM, et al: Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med. 17:55–63. 2011. View Article : Google Scholar | |
Imasawa T, Koike K, Ishii I, Chun J and Yatomi Y: Blockade of sphingosine 1-phosphate receptor 2 signaling attenuates streptozotocin-induced apoptosis of pancreatic beta-cells. Biochem Biophys Res Commun. 392:207–211. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma MM, Chen JL, Wang GG, Wang H, Lu Y, Li JF, Yi J, Yuan YJ, Zhang QW, et al: Sphingosine kinase 1 participates in insulin signalling and regulates glucose metabolism and homeostasis in KK/Ay diabetic mice. Diabetologia. 50:891–900. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Badeanlou L, Bielawski J, Ciaraldi TP and Samad F: Sphingosine kinase 1 regulates adipose proinflammatory responses and insulin resistance. Am J Physiol Endocrinol Metab. 306:E756–E768. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mikłosz A, Łukaszuk B, Baranowski M, Górski J and Chabowski A: Effects of inhibition of serine palmitoyltransferase (SPT) and sphingosine kinase 1 (SphK1) on palmitate induced insulin resistance in L6 myotubes. PLoS One. 8:e855472013. View Article : Google Scholar | |
Rapizzi E, Taddei ML, Fiaschi T, Donati C, Bruni P and Chiarugi P: Sphingosine 1-phosphate increases glucose uptake through trans-activation of insulin receptor. Cell Mol Life Sci. 66:3207–3218. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rapizzi E, Donati C, Cencetti F, Nincheri P and Bruni P: Sphingosine 1-phosphate differentially regulates proliferation of C2C12 reserve cells and myoblasts. Mol Cell Biochem. 314:193–199. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takuwa N, Ohkura S, Takashima S, Ohtani K, Okamoto Y, Tanaka T, Hirano K, Usui S, Wang F, Du W, et al: S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic mice involves reactive oxygen species. Cardiovasc Res. 85:484–493. 2010. View Article : Google Scholar : | |
Patel SA, Hoehn KL, Lawrence RT, Sawbridge L, Talbot NA, Tomsig JL, Turner N, Cooney GJ, Whitehead JP, Kraegen EW and Cleasby ME: Overexpression of the adiponectin receptor AdipoR1 in rat skeletal muscle amplifies local insulin sensitivity. Endocrinology. 153:5231–5246. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Mottillo EP, Zhao J, Gartung A, VanHecke GC, Lee JF, Maddipati KR, Xu H, Ahn YH, Proia RL, et al: Adipocyte lipolysis-stimulated interleukin-6 production requires sphingosine kinase 1 activity. J Biol Chem. 289:32178–32185. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tous M, Ferrer-Lorente R and Badimon L: Selective inhibition of sphingosine kinase-1 protects adipose tissue against LPS-induced inflammatory response in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab. 307:E437–E446. 2014. View Article : Google Scholar : PubMed/NCBI | |
Janes K, Little JW, Li C, Bryant L, Chen C, Chen Z, Kamocki K, Doyle T, Snider A, Esposito E, et al: The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1. J Biol Chem. 289:21082–21097. 2014. View Article : Google Scholar : PubMed/NCBI | |
Guan H, Song L, Cai J, Huang Y, Wu J, Yuan J, Li J and Li M: Sphingosine kinase 1 regulates the Akt/FOXO3a/Bim pathway and contributes to apoptosis resistance in glioma cells. PLoS One. 6:e199462011. View Article : Google Scholar : PubMed/NCBI | |
Abuhusain HJ, Matin A, Qiao Q, Shen H, Kain N, Day BW, Stringer BW, Daniels B, Laaksonen MA, Teo C, et al: A metabolic shift favoring sphingosine 1-phosphate at the expense of ceramide controls glioblastoma angiogenesis. J Biol Chem. 288:37355–37364. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xie B, Shen J, Dong A, Rashid A, Stoller G and Campochiaro PA: Blockade of sphingosine-1-phosphate reduces macrophage influx and retinal and choroidal neovascularization. J Cell Physiol. 218:192–198. 2009. View Article : Google Scholar | |
Maines LW, French KJ, Wolpert EB, Antonetti DA and Smith CD: Pharmacologic manipulation of sphingosine kinase in retinal endothelial cells: Implications for angiogenic ocular diseases. Invest Ophthalmol Vis Sci. 47:5022–5031. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lan T, Liu W, Xie X, Xu S, Huang K, Peng J, Shen X, Liu P, Wang L, Xia P and Huang H: Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells. Mol Endocrinol. 25:2094–2105. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Y: Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney Int. 69:213–217. 2006. View Article : Google Scholar : PubMed/NCBI | |
Katsuma S, Hada Y, Ueda T, Shiojima S, Hirasawa A, Tanoue A, Takagaki K, Ohgi T, Yano J and Tsujimoto G: Signalling mechanisms in sphingosine 1-phosphate-promoted mesangial cell proliferation. Genes Cells. 7:1217–1230. 2002. View Article : Google Scholar : PubMed/NCBI | |
Klawitter S, Hofmann LP, Pfeilschifter J and Huwiler A: Extracellular nucleotides induce migration of renal mesangial cells by upregulating sphingosine kinase-1 expression and activity. Br J Pharmacol. 150:271–280. 2007. View Article : Google Scholar : PubMed/NCBI | |
Xin C, Ren S, Kleuser B, Shabahang S, Eberhardt W, Radeke H, Schäfer-Korting M, Pfeilschifter J and Huwiler A: Sphingosine 1-phosphate cross-activates the Smad signaling cascade and mimics transforming growth factor-beta-induced cell responses. J Biol Chem. 279:35255–35262. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yaghobian D, Don AS, Yaghobian S, Chen X, Pollock CA and Saad S: Increased sphingosine 1-phosphate mediates inflammation and fibrosis in tubular injury in diabetic nephropathy. Clin Exp Pharmacol Physiol. 43:56–66. 2016. View Article : Google Scholar | |
Spiegel S and Milstien S: Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat Rev Mol Cell Biol. 4:397–407. 2003. View Article : Google Scholar : PubMed/NCBI | |
Geoffroy K, Troncy L, Wiernsperger N, Lagarde M and El Bawab S: Glomerular proliferation during early stages of diabetic nephropathy is associated with local increase of sphingosine-1-phosphate levels. FEBS Lett. 579:1249–1254. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lan T, Shen X, Liu P, Liu W, Xu S, Xie X, Jiang Q, Li W and Huang H: Berberine ameliorates renal injury in diabetic C57BL/6 mice: Involvement of suppression of SphK-S1P signaling pathway. Arch Biochem Biophys. 502:112–120. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang K, Huang J, Chen C, Hao J, Wang S, Huang J, Liu P and Huang H: AP-1 regulates sphingosine kinase 1 expression in a positive feedback manner in glomerular mesangial cells exposed to high glucose. Cell Signal. 26:629–638. 2014. View Article : Google Scholar | |
Liu W, Lan T, Xie X, Huang K, Peng J, Huang J, Shen X, Liu P and Huang H: S1P2 receptor mediates sphingosine-1-phosphate-induced fibronectin expression via MAPK signaling pathway in mesangial cells under high glucose condition. Exp Cell Res. 318:936–943. 2012. View Article : Google Scholar : PubMed/NCBI | |
Imasawa T, Kitamura H, Ohkawa R, Satoh Y, Miyashita A and Yatomi Y: Unbalanced expression of sphingosine 1-phosphate receptors in diabetic nephropathy. Exp Toxicol Pathol. 62:53–60. 2010. View Article : Google Scholar | |
Xia P, Wang L, Gamble JR and Vadas MA: Activation of sphingosine kinase by tumor necrosis factor-alpha inhibits apoptosis in human endothelial cells. J Biol Chem. 274:34499–34505. 1999. View Article : Google Scholar : PubMed/NCBI | |
Vessey DA, Kelley M, Li L, Huang Y, Zhou HZ, Zhu BQ and Karliner JS: Role of sphingosine kinase activity in protection of heart against ischemia reperfusion injury. Med Sci Monit. 12:BR318–BR324. 2006.PubMed/NCBI | |
Jin ZQ and Karliner JS: Low dose N, N-dimethylsphingosine is cardioprotective and activates cytosolic sphingosine kinase by a PKCepsilon dependent mechanism. Cardiovasc Res. 71:725–734. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jin ZQ, Goetzl EJ and Karliner JS: Sphingosine kinase activation mediates ischemic preconditioning in murine heart. Circulation. 110:1980–1989. 2004. View Article : Google Scholar : PubMed/NCBI | |
Besler C, Heinrich K, Rohrer L, Doerries C, Riwanto M, Shih DM, Chroni A, Yonekawa K, Stein S, Schaefer N, et al: Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest. 121:2693–2708. 2011. View Article : Google Scholar : PubMed/NCBI | |
Park SW, Kim M, Kim JY, Brown KM, Haase VH, D'Agati VD and Lee HT: Proximal tubule sphingosine kinase-1 has a critical role in A1 adenosine receptor-mediated renal protection from ischemia. Kidney Int. 82:878–891. 2012. View Article : Google Scholar : PubMed/NCBI | |
Paneni F, Beckman JA, Creager MA and Cosentino F: Diabetes and vascular disease: Pathophysiology, clinical consequences, and medical therapy: Part I. Eur Heart J. 34:2436–2443. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr and Sowers JR: Diabetes and cardiovascular disease: A statement for healthcare professionals from the American Heart Association. Circulation. 100:1134–1146. 1999. View Article : Google Scholar : PubMed/NCBI | |
Schnell O, Cappuccio F, Genovese S, Standl E, Valensi P and Ceriello A: Type 1 diabetes and cardiovascular disease. Cardiovasc Diabetol. 12:1562013. View Article : Google Scholar : PubMed/NCBI | |
Fioretto P, Dodson PM, Ziegler D and Rosenson RS: Residual microvascular risk in diabetes: Unmet needs and future directions. Nat Rev Endocrinol. 6:19–25. 2010. View Article : Google Scholar | |
Rosenberg DE, Jabbour SA and Goldstein BJ: Insulin resistance, diabetes and cardiovascular risk: Approaches to treatment. Diabetes Obes Metab. 7:642–653. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li H, Horke S and Förstermann U: Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 237:208–219. 2014. View Article : Google Scholar : PubMed/NCBI | |
Keul P, Sattler K and Levkau B: HDL and its sphingosine-1-phosphate content in cardioprotection. Heart Fail Rev. 12:301–306. 2007. View Article : Google Scholar : PubMed/NCBI | |
Karliner JS: Sphingosine kinase regulation and cardioprotection. Cardiovasc Res. 82:184–192. 2009. View Article : Google Scholar : | |
Karliner JS: Sphingosine kinase and sphingosine 1-phosphate in the heart: A decade of progress. Biochim Biophys Acta. 1831:203–212. 2013. View Article : Google Scholar | |
Whetzel AM, Bolick DT and Hedrick CC: Sphingosine-1-phosphate inhibits high glucose-mediated ERK1/2 action in endothelium through induction of MAP kinase phosphatase-3. Am J Physiol Cell Physiol. 296:C339–C345. 2009. View Article : Google Scholar : | |
Whetzel AM, Bolick DT, Srinivasan S, Macdonald TL, Morris MA, Ley K and Hedrick CC: Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor. Circ Res. 99:731–739. 2006. View Article : Google Scholar : PubMed/NCBI | |
Khafaji HA and Suwaidi JM: Atypical presentation of acute and chronic coronary artery disease in diabetics. World J Cardiol. 6:802–813. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jin ZQ, Karliner JS and Vessey DA: Ischaemic postconditioning protects isolated mouse hearts against ischaemia/reperfusion injury via sphingosine kinase isoform-1 activation. Cardiovasc Res. 79:134–140. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vessey DA, Kelley M, Li L and Huang Y: Sphingosine protects aging hearts from ischemia/reperfusion injury: Superiority to sphingosine 1-phosphate and ischemic pre- and post-conditioning. Oxid Med Cell Longev. 2:146–151. 2009. View Article : Google Scholar : | |
Bonder CS, Sun WY, Matthews T, Cassano C, Li X, Ramshaw HS, Pitson SM, Lopez AF, Coates PT, Proia RL, et al: Sphingosine kinase regulates the rate of endothelial progenitor cell differentiation. Blood. 113:2108–2117. 2009. View Article : Google Scholar : | |
Yu H, Yuan L, Xu M, Zhang Z and Duan H: Sphingosine kinase 1 improves cutaneous wound healing in diabetic rats. Injury. 45:1054–1058. 2014. View Article : Google Scholar : PubMed/NCBI | |
Furuya H, Wada M, Shimizu Y, Yamada PM, Hannun YA, Obeid LM and Kawamori T: Effect of sphingosine kinase 1 inhibition on blood pressure. FASEB J. 27:656–664. 2013. View Article : Google Scholar : | |
Igarashi J and Michel T: Sphingosine 1-phosphate and isoform-specific activation of phosphoinositide 3-kinase beta. Evidence for divergence and convergence of receptor-regulated endothelial nitric-oxide synthase signaling pathways. J Biol Chem. 276:36281–36288. 2001. View Article : Google Scholar : PubMed/NCBI | |
De Palma C, Meacci E, Perrotta C, Bruni P and Clementi E: Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: A novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol. 26:99–105. 2006. View Article : Google Scholar | |
Yin Z, Fan L, Wei L, Gao H, Zhang R, Tao L, Cao F and Wang H: FTY720 protects cardiac microvessels of diabetes: A critical role of S1P1/3 in diabetic heart disease. PLoS One. 7:e429002012. View Article : Google Scholar : PubMed/NCBI | |
Sukocheva O, Wadham C, Gamble J and Xia P: Sphingosine-1-phosphate receptor 1 transmits estrogens' effects in endothelial cells. Steroids. 104:237–245. 2015. View Article : Google Scholar : PubMed/NCBI | |
Margolis KL, Bonds DE, Rodabough RJ, Tinker L, Phillips LS, Allen C, Bassford T, Burke G, Torrens J and Howard BV; Women's Health Initiative Investigators: Effect of oestrogen plus progestin on the incidence of diabetes in postmenopausal women: Results from the Women's Health Initiative Hormone Trial. Diabetologia. 47:1175–1187. 2004. View Article : Google Scholar : PubMed/NCBI | |
Russo SB, Ross JS and Cowart LA: Sphingolipids in obesity, type 2 diabetes, and metabolic disease. Handb Exp Pharmacol. 216:373–401. 2013. View Article : Google Scholar | |
Kontush A and Chapman MJ: Functionally defective high-density lipoprotein: A new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 58:342–374. 2006. View Article : Google Scholar : PubMed/NCBI | |
Barter PJ, Puranik R and Rye KA: New insights into the role of HDL as an anti-inflammatory agent in the prevention of cardiovascular disease. Curr Cardiol Rep. 9:493–498. 2007. View Article : Google Scholar : PubMed/NCBI | |
deGoma EM, deGoma RL and Rader DJ: Beyond high-density lipoprotein cholesterol levels evaluating high-density lipoprotein function as influenced by novel therapeutic approaches. J Am Coll Cardiol. 51:2199–2211. 2008. View Article : Google Scholar : PubMed/NCBI | |
Levkau B: HDL-S1P: Cardiovascular functions, disease-associated alterations, and therapeutic applications. Front Pharmacol. 6:2432015. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Peng H, Liu D, Ji L, Niu C, Ren J, Pan B, Hu J, Zheng L and Huang Y: High-density lipoprotein of patients with type 2 diabetes mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: Relationship with HDL-associated sphingosine-1-phosphate. Cardiovasc Diabetol. 12:272013. View Article : Google Scholar : PubMed/NCBI | |
Tong X, Lv P, Mathew AV, Liu D, Niu C, Wang Y, Ji L, Li J, Fu Z, Pan B, et al: The compensatory enrichment of sphingosine-1-phosphate harbored on glycated high-density lipoprotein restores endothelial protective function in type 2 diabetes mellitus. Cardiovasc Diabetol. 13:822014. View Article : Google Scholar | |
Zhu D, Sreekumar PG, Hinton DR and Kannan R: Expression and regulation of enzymes in the ceramide metabolic pathway in human retinal pigment epithelial cells and their relevance to retinal degeneration. Vision Res. 50:643–651. 2010. View Article : Google Scholar : | |
Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S and Proia RL: Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol. 25:11113–11121. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tsuji T, Inoue M, Yoshida Y, Fujita T, Kaino Y and Kohno T: Therapeutic approach for type 1 diabetes mellitus using the novel immunomodulator FTY720 (fingolimod) in combination with once-daily injection of insulin glargine in non-obese diabetic mice. J Diabetes Investig. 3:132–137. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Cabrera PJ, Brown S, Studer SM and Rosen H: S1P signaling: new therapies and opportunities. F1000Prime Rep. 6:1092014. |