1
|
Loeser RF: Age-related changes in the
musculoskeletal system and the development of osteoarthritis. Clin
Geriatr Med. 26:371–386. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Petite H, Viateau V, Bensaïd W, Meunier A,
de Pollak C, Bourguignon M, Oudina K, Sedel L and Guillemin G:
Tissue-engineered bone regeneration. Nat Biotechnol. 18:959–963.
2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Stock UA and Vacanti JP: Tissue
engineering: current state and prospects. Annu Rev Med. 52:443–451.
2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang XF, Song Y, Liu YS, Sun YC, Wang YG,
Wang Y and Lyu PJ: Osteogenic differentiation of three-dimensional
bioprinted constructs consisting of human adipose-derived stem
cells in vitro and in vivo. PLoS One. 11:e01572142016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yi H, Ur Rehman F, Zhao C, Liu B and He N:
Recent advances in nano scaffolds for bone repair. Bone Res.
4:160502016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Krampera M, Pizzolo G, Aprili G and
Franchini M: Mesenchymal stem cells for bone, cartilage, tendon and
skeletal muscle repair. Bone. 39:678–683. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Krampera M, Marconi S, Pasini A, Galiè M,
Rigotti G, Mosna F, Tinelli M, Lovato L, Anghileri E, Andreini A,
et al: Induction of neural-like differentiation in human
mesenchymal stem cells derived from bone marrow, fat, spleen and
thymus. Bone. 40:382–390. 2007. View Article : Google Scholar
|
8
|
Li X, Ling W, Pennisi A, Wang Y, Khan S,
Heidaran M, Pal A, Zhang X, He S, Zeitlin A, et al: Human
placenta-derived adherent cells prevent bone loss, stimulate bone
formation, and suppress growth of multiple myeloma in bone. Stem
Cells. 29:263–273. 2011. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Arinzeh TL, Peter SJ, Archambault MP, van
den Bos C, Gordon S, Kraus K, Smith A and Kadiyala S: Allogeneic
mesenchymal stem cells regenerate bone in a critical-sized canine
segmental defect. J Bone Joint Surg Am. 85-A:1927–1935. 2003.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Hernigou P, Poignard A, Manicom O, Mathieu
G and Rouard H: The use of percutaneous autologous bone marrow
transplantation in nonunion and avascular necrosis of bone. J Bone
Joint Surg Br. 87:896–902. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tseng SS, Lee MA and Reddi AH: Nonunions
and the potential of stem cells in fracture-healing. J Bone Joint
Surg Am. 90(Suppl 1): 92–98. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
De Biase P and Capanna R: Clinical
applications of BMPs. Injury. 36(Suppl 3): S43–S46. 2005.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Bais MV, Wigner N, Young M, Toholka R,
Graves DT, Morgan EF, Gerstenfeld LC and Einhorn TA: BMP2 is
essential for post natal osteogenesis but not for recruitment of
osteogenic stem cells. Bone. 45:254–266. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Osyczka AM and Leboy PS: Bone
morphogenetic protein regulation of early osteoblast genes in human
marrow stromal cells is mediated by extracellular signal-regulated
kinase and phosphatidylinositol 3-kinase signaling. Endocrinology.
146:3428–3437. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Manochantr S, U-pratya Y, Kheolamai P,
Rojphisan S, Chayosumrit M, Tantrawatpan C, Supokawej A and
Issaragrisil S: Immunosuppressive properties of mesenchymal stromal
cells derived from amnion, placenta, Wharton's jelly and umbilical
cord. Intern Med J. 43:430–439. 2013. View Article : Google Scholar
|
16
|
Cheng YH, Lin FH, Wang CY, Hsiao CY, Chen
HC, Kuo HY, Tsai TF and Chiou SH: Recovery of oxidative
stress-induced damage in Cisd2-deficient cardiomyocytes by
sustained release of ferulic acid from injectable hydrogel.
Biomaterials. 103:207–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Scarfi S: Use of bone morphogenetic
proteins in mesenchymal stem cell stimulation of cartilage and bone
repair. World J Stem Cells. 8:1–12. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dang PN, Dwivedi N, Phillips LM, Yu X,
Herberg S, Bowerman C, Solorio LD, Murphy WL and Alsberg E:
Controlled dual growth factor delivery from microparticles
incorporated within human bone marrow-derived mesenchymal stem cell
aggregates for enhanced bone tissue engineering via endochondral
ossification. Stem Cells Transl Med. 5:206–217. 2016. View Article : Google Scholar :
|
19
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
20
|
Koç ON and Lazarus HM: Mesenchymal stem
cells: Heading into the clinic. Bone Marrow Transplant. 27:235–239.
2001. View Article : Google Scholar : PubMed/NCBI
|
21
|
Na K, Kim SW, Sun BK, Woo DG, Yang HN,
Chung HM and Park KH: Osteogenic differentiation of rabbit
mesenchymal stem cells in thermo-reversible hydrogel constructs
containing hydroxyapatite and bone morphogenic protein-2 (BMP-2).
Biomaterials. 28:2631–2637. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Luu HH, Song WX, Luo X, Manning D, Luo J,
Deng ZL, Sharff KA, Montag AG, Haydon RC and He TC: Distinct roles
of bone morphogenetic proteins in osteogenic differentiation of
mesenchymal stem cells. J Orthop Res. 25:665–677. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Osyczka AM, Damek-Poprawa M, Wojtowicz A
and Akintoye SO: Age and skeletal sites affect BMP-2 responsiveness
of human bone marrow stromal cells. Connect Tissue Res. 50:270–277.
2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lieberman JR, Daluiski A, Stevenson S, Wu
L, McAllister P, Lee YP, Kabo JM, Finerman GA, Berk AJ and Witte
ON: The effect of regional gene therapy with bone morphogenetic
protein-2-producing bone-marrow cells on the repair of segmental
femoral defects in rats. J Bone Joint Surg Am. 81:905–917. 1999.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lin Z, Wang JS, Lin L, Zhang J, Liu Y,
Shuai M and Li Q: Effects of BMP2 and VEGF165 on the osteogenic
differentiation of rat bone marrow-derived mesenchymal stem cells.
Exp Ther Med. 7:625–629. 2014.PubMed/NCBI
|
26
|
Viateau V1, Guillemin G, Bousson V, Oudina
K, Hannouche D, Sedel L, Logeart-Avramoglou D and Petite H:
Long-bone critical-size defects treated with tissue-engineered
grafts: A study on sheep. J Orthop Res. 25:741–749. 2007.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X,
Gong W, Han ZB, Xu ZS, Lu YX, Liu D, et al: Isolation and
characterization of human umbilical cord mesenchymal stem cells
with hematopoiesis-supportive function and other potentials.
Haematologica. 91:1017–1026. 2006.PubMed/NCBI
|
28
|
Wagner W, Wein F, Seckinger A, Frankhauser
M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W,
et al: Comparative characteristics of mesenchymal stem cells from
human bone marrow, adipose tissue, and umbilical cord blood. Exp
Hematol. 33:1402–1416. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kratchmarova I, Blagoev B, Haack-Sorensen
M, Kassem M and Mann M: Mechanism of divergent growth factor
effects in mesenchymal stem cell differentiation. Science.
308:1472–1477. 2005. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hsiao HY, Yang SR, Brey EM, Chu IM and
Cheng MH: Hydrogel delivery of mesenchymal stem cell-expressing
bone morphogenetic protein-2 enhances bone defect repair. Plast
Reconstr Surg Glob Open. 4:e8382016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop Dj and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The International Society for Cellular
Therapy position statement. Cytotherapy. 8:315–317. 2006.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Mikami Y, Tsuda H, Akiyama Y, Honda M,
Shimizu N, Suzuki N and Komiyama K: Alkaline phosphatase determines
polyphosphate-induced mineralization in a cell-type independent
manner. J Bone Miner Metab. 34:627–637. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Katagiri T, Yamaguchi A, Komaki M, Abe E,
Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A and
Suda T: Bone morphogenetic protein-2 converts the differentiation
pathway of C2C12 myoblasts into the osteoblast lineage. J Cell
Biol. 127:1755–1766. 1994. View Article : Google Scholar : PubMed/NCBI
|
34
|
Nishimura R, Hata K, Ikeda F, Ichida F,
Shimoyama A, Matsubara T, Wada M, Amano K and Yoneda T: Signal
transduction and transcriptional regulation during mesenchymal cell
differentiation. J Bone Miner Metab. 26:203–212. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ryoo HM, Lee MH and Kim YJ: Critical
molecular switches involved in BMP-2-induced osteogenic
differentiation of mesenchymal cells. Gene. 366:51–57. 2006.
View Article : Google Scholar
|
36
|
Nakashima K, Zhou X, Kunkel G, Zhang Z,
Deng JM, Behringer RR and de Crombrugghe B: The novel zinc
finger-containing transcription factor osterix is required for
osteoblast differentiation and bone formation. Cell. 108:17–29.
2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tsao YT, Huang YJ, Wu HH, Liu YA, Liu YS
and Lee OK: Osteocalcin mediates biomineralization during
osteogenic maturation in human mesenchymal stromal cells. Int J Mol
Sci. 18:1592017. View Article : Google Scholar :
|
38
|
Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C,
Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM and Bae SC: Runx2 is
a common target of transforming growth factor beta1 and bone
morphogenetic protein 2, and cooperation between Runx2 and Smad5
induces osteoblast-specific gene expression in the pluripotent
mesenchymal precursor cell line C2C12. Mol Cell Biol. 20:8783–8792.
2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Kim HJ, Kim JH, Bae SC, Choi JY, Kim HJ
and Ryoo HM: The protein kinase C pathway plays a central role in
the fibroblast growth factor-stimulated expression and
transactivation activity of Runx2. J Biol Chem. 278:319–326. 2003.
View Article : Google Scholar
|
40
|
Kim YJ, Lee MH, Wozney JM, Cho JY and Ryoo
HM: Bone morphogenetic protein-2-induced alkaline phosphatase
expression is stimulated by Dlx5 and repressed by Msx2. J Biol
Chem. 279:50773–50780. 2004. View Article : Google Scholar : PubMed/NCBI
|