1
|
Hogan J and Radhakrishnan J: The treatment
of idiopathic focal segmental glomerulosclerosis in adults. Adv
Chronic Kidney Dis. 21:434–441. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Andolino TP and Reid Adam J: Nephrotic
syndrome. Pediatr Rev. 36:117–125. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tran TH, J Hughes G, Greenfeld C and Pham
JT: Overview of current and alternative therapies for idiopathic
membranous nephropathy. Pharmacotherapy. 35:396–411. 2015.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Rezende GM, Viana VS, Malheiros DM, Borba
EF, Silva NA, Silva C, Leon EP, Noronha IL and Bonfa E: Podocyte
injury in pure membranous and proliferative lupus nephritis:
Distinct underlying mechanisms of proteinuria? Lupus. 23:255–262.
2014. View Article : Google Scholar
|
5
|
Akchurin O and Reidy KJ: Genetic causes of
proteinuria and nephrotic syndrome: Impact on podocyte
pathobiology. Pediatr Nephrol. 30:221–233. 2015. View Article : Google Scholar
|
6
|
Yan K, Kudo A, Hirano H, Watanabe T,
Tasaka T, Kataoka S, Nakajima N, Nishibori Y, Shibata T, Kohsaka T,
et al: Subcellular localization of glucocorticoid receptor protein
in the human kidney glomerulus. Kidney Int. 56:65–73. 1999.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Xing CY, Saleem MA, Coward RJ, Ni L,
Witherden IR and Mathieson PW: Direct effects of dexamethasone on
human podocytes. Kidney Int. 70:1038–1045. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ransom RF, Lam NG, Hallett MA, Atkinson SJ
and Smoyer WE: Glucocorticoids protect and enhance recovery of
cultured murine podocytes via actin filament stabilization. Kidney
Int. 68:2473–2483. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wada T, Pippin JW, Marshall CB, Griffin SV
and Shankland SJ: Dexamethasone prevents podocyte apoptosis induced
by puromycin aminonucleoside: Role of P53 and Bcl-2-related family
proteins. J Am Soc Nephrol. 16:2615–2625. 2005. View Article : Google Scholar : PubMed/NCBI
|
10
|
Agrawal S, Guess AJ, Benndorf R and Smoyer
WE: Comparison of direct action of thiazolidinediones and
glucocorticoids on renal podocytes: Protection from injury and
molecular effects. Mol Pharmacol. 80:389–399. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liu H, Gao X, Xu H, Feng C, Kuang X, Li Z
and Zha X: α-Actinin-4 is involved in the process by which
dexamethasone protects actin cytoskeleton stabilization from
adriamycin-induced podocyte injury. Nephrology (Carlton).
17:669–675. 2012. View Article : Google Scholar
|
12
|
Yu SY and Qi R: Role of bad in podocyte
apoptosis induced by puromycin aminonucleoside. Transplant Proc.
45:569–573. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ohashi T, Uchida K, Uchida S, Sasaki S and
Nitta K: Dexamethasone increases the phosphorylation of nephrin in
cultured podocytes. Clin Exp Nephrol. 15:688–693. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mao Y, Triantafillou G, Hertlein E, Towns
W, Stefanovski M, Mo X, Jarjoura D, Phelps M, Marcucci G, Lee LJ,
et al: Milatuzumab-conjugated liposomes as targeted dexamethasone
carriers for therapeutic delivery in CD74 B-cell malignancies.
Clinical cancer research: Clin Cancer Res. 19:347–356. 2013.
View Article : Google Scholar
|
15
|
Graversen JH, Svendsen P, Dagnæs-Hansen F,
Dal J, Anton G, Etzerodt A, Petersen MD, Christensen PA, Møller HJ
and Moestrup SK: Targeting the hemoglobin scavenger receptor CD163
in macrophages highly increases the anti-inflammatory potency of
dexamethasone. Mol Ther. 20:1550–1558. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Asgeirsdóttir SA, Kamps JA, Bakker HI,
Zwiers PJ, Heeringa P, van der Weide K, van Goor H, Petersen AH,
Morselt H, Moorlag HE, et al: Site-specific inhibition of
glomerulonephritis progression by targeted delivery of
dexamethasone to glomerular endothelium. Mol Pharmacol. 72:121–131.
2007. View Article : Google Scholar : PubMed/NCBI
|
17
|
Asgeirsdóttir SA, Zwiers PJ, Morselt HW,
Moorlag HE, Bakker HI, Heeringa P, Kok JW, Kallenberg CG, Molema G
and Kamps JA: Inhibition of proinflammatory genes in anti-GBM
glomerulonephritis by targeted dexamethasone-loaded AbEsel
liposomes. Am J Physiol Renal Physiol. 294:F554–F561. 2008.
View Article : Google Scholar
|
18
|
Wang Y, Tian Z, Thirumalai D and Zhang X:
Neonatal Fc receptor (FcRn): A novel target for therapeutic
antibodies and antibody engineering. J Drug Target. 22:269–278.
2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Eyre J, Ioannou K, Grubb BD, Saleem MA,
Mathieson PW, Brunskill NJ, Christensen EI and Topham PS:
Statin-sensitive endocytosis of albumin by glomerular podocytes. Am
J Physiol Renal Physiol. 292:F674–F681. 2007. View Article : Google Scholar
|
20
|
Haymann JP, Levraud JP, Bouet S, Kappes V,
Hagège J, Nguyen G, Xu Y, Rondeau E and Sraer JD: Characterization
and localization of the neonatal Fc receptor in adult human kidney.
J Am Soc Nephrol. 11:632–639. 2000.PubMed/NCBI
|
21
|
Wu L, Wu J, Zhou Y, Tang X, Du Y and Hu Y:
Enhanced antitumor efficacy of cisplatin by
tirapazamine-transferrin conjugate. Int J Pharm. 431:190–196. 2012.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Kufleitner J, Wagner S, Worek F, von
Briesen H and Kreuter J: Adsorption of obidoxime onto human serum
albumin nanoparticles: Drug loading, particle size and drug
release. J Microencapsul. 27:506–513. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Subia B and Kundu SC: Drug loading and
release on tumor cells using silk fibroin-albumin nanoparticles as
carriers. Nanotechnology. 24:0351032013. View Article : Google Scholar
|
24
|
Della Porta G, Adami R, Del Gaudio P,
Prota L, Aquino R and Reverchon E: Albumin-gentamicin microspheres
produced by supercritical assisted atomization: Optimization of
size, drug loading and release. J Pharm Sci. 99:4720–4729. 2010.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Kratz F: A clinical update of using
albumin as a drug vehicle - a commentary. J Control Release.
190:331–336. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rodrigues PC, Roth T, Fiebig HH, Unger C,
Mülhaupt R and Kratz F: Correlation of the acid-sensitivity of
polyethylene glycol daunorubicin conjugates with their in vitro
antiproliferative activity. Bioorg Med Chem. 14:4110–4117. 2006.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Li Y, Du Y, Liu X, Zhang Q, Jing L, Liang
X, Chi C, Dai Z and Tian J: Monitoring tumor targeting and
treatment effects of IRDye 800CW and GX1-conjugated polylactic acid
nanoparticles encapsulating endostar on glioma by optical molecular
imaging. Mol Imaging. 14:356–365. 2015.PubMed/NCBI
|
28
|
Francisco AF, Lewis MD, Jayawardhana S,
Taylor MC, Chatelain E and Kelly JM: Limited ability of
posaconazole To cure both acute and chronic Trypanosoma cruzi
infections revealed by highly sensitive in vivo imaging. Antimicrob
Agents Chemother. 59:4653–4661. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang C, Liu T, Su Y, Luo S, Zhu Y, Tan X,
Fan S, Zhang L, Zhou Y, Cheng T, et al: A near-infrared fluorescent
heptamethine indocyanine dye with preferential tumor accumulation
for in vivo imaging. Biomaterials. 31:6612–6617. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Neurath MF: Molecular Endoscopy and in
vivo Imaging in inflammatory bowel diseases. Dig Dis. 33(Suppl 1):
32–36. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Piwnica-Worms D: From the guest editor:
Illuminating cancer in vivo with molecular imaging. Cancer J.
21:150–151. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chan MM, Gray BD, Pak KY and Fong D:
Non-invasive in vivo imaging of arthritis in a collagen-induced
murine model with phosphatidylserine-binding near-infrared (NIR)
dye. Arthritis Res Ther. 17:502015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yuan A, Wu J, Tang X, Zhao L, Xu F and Hu
Y: Application of near-infrared dyes for tumor imaging,
photothermal, and photo-dynamic therapies. J Pharm Sci. 102:6–28.
2013. View Article : Google Scholar
|