1
|
Salgame P, Abrams JS, Clayberger C,
Goldstein H, Convit J, Modlin RL and Bloom BR: Differing lymphokine
profiles of functional subsets of human CD4 and CD8 T cell clones.
Science. 254:279–282. 1991. View Article : Google Scholar : PubMed/NCBI
|
2
|
Neville LF, Mathiak G and Bagasra O: The
immunobiology of interferon-gamma inducible protein 10 kD (IP-10):
A novel, pleiotropic member of the C-X-C chemokine superfamily.
Cytokine Growth Factor Rev. 8:207–219. 1997. View Article : Google Scholar
|
3
|
Farber JM: Mig and IP-10: CXC chemokines
that target lymphocytes. J Leukoc Biol. 61:246–257. 1997.PubMed/NCBI
|
4
|
Cole KE, Strick CA, Paradis TJ, Ogborne
KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, et
al: Interferon-inducible T cell alpha chemoattractant (I-TAC): A
novel non-ELR CXC chemokine with potent activity on activated T
cells through selective high affinity binding to CXCR3. J Exp Med.
187:2009–2021. 1998. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu MT, Armstrong D, Hamilton TA and Lane
TE: Expression of Mig (monokine induced by interferon-gamma) is
important in T lymphocyte recruitment and host defense following
viral infection of the central nervous system. J Immunol.
166:1790–1795. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bonecchi R, Bianchi G, Bordignon PP,
D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA,
Mantovani A, et al: Differential expression of chemokine receptors
and chemotactic responsiveness of type 1 T helper cells (Th1s) and
Th2s. J Exp Med. 187:129–134. 1998. View Article : Google Scholar : PubMed/NCBI
|
7
|
Groom JR and Luster AD: CXCR3 in T cell
function. Exp Cell Res. 317:620–631. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nakayama M, Abiru N, Moriyama H, Babaya N,
Liu E, Miao D, Yu L, Wegmann DR, Hutton JC, Elliott JF, et al:
Prime role for an insulin epitope in the development of type 1
diabetes in NOD mice. Nature. 435:220–223. 2005. View Article : Google Scholar : PubMed/NCBI
|
9
|
Michelsen BK, Petersen JS, Boel E, Møldrup
A, Dyrberg T and Madsen OD: Cloning, characterization, and
autoimmune recognition of rat islet glutamic acid decarboxylase in
insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA.
88:8754–8758. 1991. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bonifacio E, Lampasona V, Genovese S,
Ferrari M and Bosi E: Identification of protein tyrosine
phosphatase-like IA2 (islet cell antigen 512) as the
insulin-dependent diabetes-related 37/40K autoantigen and a target
of islet-cell antibodies. J Immunol. 155:5419–5426. 1995.PubMed/NCBI
|
11
|
Graham KL, Krishnamurthy B, Fynch S,
Ayala-Perez R, Slattery RM, Santamaria P, Thomas HE and Kay TW:
Intra-islet proliferation of cytotoxic T lymphocytes contributes to
insulitis progression. Eur J Immunol. 42:1717–1722. 2012.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Roep BO, Kleijwegt FS, van Halteren AG,
Bonato V, Boggi U, Vendrame F, Marchetti P and Dotta F: Islet
inflammation and CXCL10 in recent-onset type 1 diabetes. Clin Exp
Immunol. 159:338–343. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Heiss E, Herhaus C, Klimo K, Bartsch H and
Gerhäuser C: Nuclear factor kappa B is a molecular target for
sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem.
276:32008–32015. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rose P, Huang Q, Ong CN and Whiteman M:
Broccoli and watercress suppress matrix metalloproteinase-9
activity and invasiveness of human MDA-MB-231 breast cancer cells.
Toxicol Appl Pharmacol. 209:105–113. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lin W, Wu RT, Wu T, Khor TO, Wang H and
Kong AN: Sulforaphane suppressed LPS-induced inflammation in mouse
peritoneal macrophages through Nrf2 dependent pathway. Biochem
Pharmacol. 76:967–973. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhao J, Moore AN, Redell JB and Dash PK:
Enhancing expression of Nrf2-driven genes protects the blood brain
barrier after brain injury. J Neurosci. 27:10240–10248. 2007.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Annabi B, Rojas-Sutterlin S, Laroche M,
Lachambre MP, Moumdjian R and Béliveau R: The diet-derived
sulforaphane inhibits matrix metalloproteinase-9-activated human
brain microvascular endothelial cell migration and tubulogenesis.
Mol Nutr Food Res. 52:692–700. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Schroder K, Hertzog PJ, Ravasi T and Hume
DA: Interferon-gamma: An overview of signals, mechanisms and
functions. J Leukoc Biol. 75:163–189. 2004. View Article : Google Scholar
|
19
|
Lu X, Masic A, Liu Q and Zhou Y:
Regulation of influenza A virus induced CXCL-10 gene expression
requires PI3K/Akt pathway and IRF3 transcription factor. Mol
Immunol. 48:1417–1423. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Jaruga B, Hong F, Kim WH and Gao B:
IFN-gamma/STAT1 acts as a proinflammatory signal in T cell-mediated
hepatitis via induction of multiple chemokines and adhesion
molecules: A critical role of IRF-1. Am J Physiol Gastrointest
Liver Physiol. 287:G1044–G1052. 2004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Capua I, Mercalli A, Pizzuto MS,
Romero-Tejeda A, Kasloff S, De Battisti C, Bonfante F, Patrono LV,
Vicenzi E, Zappulli V, et al: Influenza A viruses grow in human
pancreatic cells and cause pancreatitis and diabetes in an animal
model. J Virol. 87:597–610. 2013. View Article : Google Scholar :
|
22
|
Christen U, McGavern DB, Luster AD, von
Herrath MG and Oldstone MB: Among CXCR3 chemokines,
IFN-gamma-inducible protein of 10 kDa (CXC chemokine ligand (CXCL)
10) but not monokine induced by IFN-gamma (CXCL9) imprints a
pattern for the subsequent development of autoimmune disease. J
Immunol. 171:6838–6845. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Westwell-Roper C, Nackiewicz D, Dan M and
Ehses JA: Toll-like receptors and NLRP3 as central regulators of
pancreatic islet inflammation in type 2 diabetes. Immunol Cell
Biol. 92:314–323. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Burke SJ and Collier JJ: Insulitis and
diabetes: A perspective on islet inflammation. Immunome Res.
S2:e0022014.
|
25
|
Baker RG, Hayden MS and Ghosh S: NF-κB,
inflammation, and metabolic disease. Cell Metab. 13:11–22. 2011.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Darnell JE Jr, Kerr IM and Stark GR:
Jak-STAT pathways and transcriptional activation in response to
IFNs and other extracellular signaling proteins. Science.
264:1415–1421. 1994. View Article : Google Scholar : PubMed/NCBI
|
27
|
Aaronson DS and Horvath CM: A road map for
those who don't know JAK-STAT. Science. 296:1653–1655. 2002.
View Article : Google Scholar : PubMed/NCBI
|
28
|
O'Shea JJ, Gadina M and Schreiber RD:
Cytokine signaling in 2002: New surprises in the Jak/Stat pathway.
Cell. 109(Suppl): S121–S131. 2002. View Article : Google Scholar : PubMed/NCBI
|
29
|
Guerrero-Beltrán CE, Mukhopadhyay P,
Horváth B, Rajesh M, Tapia E, García-Torres I, Pedraza-Chaverri J
and Pacher P: Sulforaphane, a natural constituent of broccoli,
prevents cell death and inflammation in nephropathy. J Nutr
Biochem. 23:494–500. 2012. View Article : Google Scholar
|
30
|
Devi JR and Thangam EB: Mechanisms of
anticancer activity of sulforaphane from Brassica oleracea in HEp-2
human epithelial carcinoma cell line. Asian Pac J Cancer Prev.
13:2095–2100. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Jeong SI, Choi BM and Jang SI:
Sulforaphane suppresses TARC/CCL17 and MDC/CCL22 expression through
heme oxygenase-1 and NF-κB in human keratinocytes. Arch Pharm Res.
33:1867–1876. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Saha B, Jyothi Prasanna S, Chandrasekar B
and Nandi D: Gene modulation and immunoregulatory roles of
interferon gamma. Cytokine. 50:1–14. 2010. View Article : Google Scholar
|
33
|
Zhong F, Chen H, Han L, Jin Y and Wang W:
Curcumin attenuates lipopolysaccharide-induced renal inflammation.
Biol Pharm Bull. 34:226–232. 2011. View Article : Google Scholar : PubMed/NCBI
|
34
|
Niu X, Fan T, Li W, Xing W and Huang H:
The anti-inflammatory effects of sanguinarine and its modulation of
inflammatory mediators from peritoneal macrophages. Eur J
Pharmacol. 689:262–269. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Park DW, Kim JS, Chin BR and Baek SH:
Resveratrol inhibits inflammation induced by heat-killed Listeria
monocytogenes. J Med Food. 15:788–794. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hongqin T, Xinyu L, Heng G, Lanfang X,
Yongfang W and Shasha S: Triptolide inhibits IFN-γ signaling via
the Jak/STAT pathway in HaCaT keratinocytes. Phytother Res.
25:1678–1685. 2011. View
Article : Google Scholar : PubMed/NCBI
|
37
|
Yang J, Han Y, Chen C, Sun H, He D, Guo J,
Jiang B, Zhou L and Zeng C: EGCG attenuates high glucose-induced
endothelial cell inflammation by suppression of PKC and NF-κB
signaling in human umbilical vein endothelial cells. Life Sci.
92:589–597. 2013. View Article : Google Scholar : PubMed/NCBI
|