1
|
Chang CC, Chang KC, Tsai SJ, Chang HH and
Lin CP: Neurogenic differentiation of dental pulp stem cells to
neuron-like cells in dopaminergic and motor neuronal inductive
media. J Formos Med Assoc. 113:956–965. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Volponi AA, Pang Y and Sharpe PT: Stem
cell-based biological tooth repair and regeneration. Trends Cell
Biol. 20:715–722. 2010. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ledesma-Martínez E, Mendoza-Núñez VM and
Santiago-Osorio E: Mesenchymal stem cells derived from dental pulp:
A review. Stem Cells Int. 2016:47095722016. View Article : Google Scholar : PubMed/NCBI
|
4
|
McCulloch CA: Proteomics for the
periodontium: Current strategies and future promise. Periodontol
2000. 40:173–183. 2006. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kim SH, Kim YS, Lee SY, Kim KH, Lee YM,
Kim WK and Lee YK: Gene expression profile in mesenchymal stem
cells derived from dental tissues and bone marrow. J Periodontal
Implant Sci. 41:192–200. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Mrozik KM, Zilm PS, Bagley CJ, Hack S,
Hoffmann P, Gronthos S and Bartold PM: Proteomic characterization
of mesenchymal stem cell-like populations derived from ovine
periodontal ligament, dental pulp, and bone marrow: Analysis of
differentially expressed proteins. Stem Cells Dev. 19:1485–1499.
2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Eleuterio E, Trubiani O, Sulpizio M, Di
Giuseppe F, Pierdomenico L, Marchisio M, Giancola R, Giammaria G,
Miscia S, Caputi S, et al: Proteome of human stem cells from
periodontal ligament and dental pulp. PLoS One. 8:e711012013.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Gronthos S, Mankani M, Brahim J, Robey PG
and Shi S: Postnatal human dental pulp stem cells (DPSCs) in vitro
and in vivo. Proc Natl Acad Sci USA. 97:13625–13630. 2000.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Seo BM, Miura M, Gronthos S, Bartold PM,
Batouli S, Brahim J, Young M, Robey PG, Wang CY and Shi S:
Investigation of multi-potent postnatal stem cells from human
periodontal ligament. Lancet. 364:149–155. 2004. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cha Y, Jeon M, Lee HS, Kim S, Kim SO, Lee
JH and Song JS: Effects of in vitro osteogenic induction on in vivo
tissue regeneration by dental pulp and periodontal ligament stem
cells. J Endod. 41:1462–1468. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L,
Wu JJ, Sun YJ, Duan YZ, Lin Z and Jin Y: Apical tooth germ
cell-conditioned medium enhances the differentiation of periodontal
ligament stem cells into cementum/periodontal ligament-like
tissues. J Periodontal Res. 44:199–210. 2009. View Article : Google Scholar
|
12
|
Mao JJ and Prockop DJ and Prockop DJ: Stem
cells in the face: Tooth regeneration and beyond. Cell Stem Cell.
11:291–301. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Han X and Amar S: Identification of genes
differentially expressed in cultured human periodontal ligament
fibroblasts vs. human gingival fibroblasts by DNA microarray
analysis. J Dent Res. 81:399–405. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lee HS, Lee J, Kim SO, Song JS, Lee JH,
Lee SI, Jung HS and Choi BJ: Comparative gene-expression analysis
of the dental follicle and periodontal ligament in humans. PLoS
One. 8:e842012013. View Article : Google Scholar :
|
15
|
Song JS, Hwang DH, Kim SO, Jeon M, Choi
BJ, Jung HS, Moon SJ, Park W and Choi HJ: Comparative gene
expression analysis of the human periodontal ligament in deciduous
and permanent teeth. PLoS One. 8:e612312013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Lee SW, Jeon M, Lee HS, Song JS, Son HK,
Choi HJ, Jung HS, Moon SJ, Park W and Kim SO: Comparative
gene-expression analysis of periodontal ligament and dental pulp in
the human permanent teeth. J Korean Acad Pediatr Dent (JKAPD).
43:166–175. 2016. View Article : Google Scholar
|
17
|
McLachlan JL, Smith AJ, Bujalska IJ and
Cooper PR: Gene expression profiling of pulpal tissue reveals the
molecular complexity of dental caries. Biochim Biophys Acta.
1741:271–281. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Heikinheimo K, Kurppa KJ, Laiho A,
Peltonen S, Berdal A, Bouattour A, Ruhin B, Catón J, Thesleff I,
Leivo I, et al: Early dental epithelial transcription factors
distinguish ameloblastoma from keratocystic odontogenic tumor. J
Dent Res. 94:101–111. 2015. View Article : Google Scholar
|
19
|
Heikinheimo K, Jee KJ, Niini T, Aalto Y,
Happonen RP, Leivo I and Knuutila S: Gene expression profiling of
ameloblastoma and human tooth germ by means of a cDNA microarray. J
Dent Res. 81:525–530. 2002. View Article : Google Scholar : PubMed/NCBI
|
20
|
Hochberg Y and Benjamini Y: More powerful
procedures for multiple significance testing. Stat Med. 9:811–818.
1990. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang J, Duncan D, Shi Z and Zhang B:
WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): Update 2013.
Nucleic Acids Res. 41:W77–83. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang B, Kirov S and Snoddy J: WebGestalt:
An integrated system for exploring gene sets in various biological
contexts. Nucleic Acids Res. 33:W741–W748. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Franceschini A, Szklarczyk D, Frankild S,
Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering
C, et al: STRING v9.1: Protein-protein interaction networks, with
increased coverage and integration. Nucleic Acids Res.
41:D808–D815. 2013. View Article : Google Scholar :
|
24
|
Butler WT, Brunn JC and Qin C: Dentin
extracellular matrix (ECM) proteins: Comparison to bone ECM and
contribution to dynamics of dentinogenesis. Connect Tissue Res.
44(Suppl 1): 171–178. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Butler WT: Dentin extracellular matrix and
dentinogenesis. Oper Dent. (Suppl 5): 18–23. 1992.PubMed/NCBI
|
26
|
Martowicz A, Seeber A and Untergasser G:
The role of EpCAM in physiology and pathology of the epithelium.
Histol Histopathol. 31:349–355. 2016.
|
27
|
Mohebiany AN, Harroch S and Bouyain S: New
insights into the roles of the contactin cell adhesion molecules in
neural development. Adv Neurobiol. 8:165–194. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Missler M, Zhang W, Rohlmann A,
Kattenstroth G, Hammer RE, Gottmann K and Südhof TC:
Alpha-neurexins couple Ca2+ channels to synaptic vesicle
exocytosis. Nature. 423:939–948. 2003. View Article : Google Scholar : PubMed/NCBI
|
29
|
Graf ER, Zhang X, Jin SX, Linhoff MW and
Craig AM: Neurexins induce differentiation of GABA and glutamate
post-synaptic specializations via neuroligins. Cell. 119:1013–1026.
2004. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hessle L, Stordalen GA, Wenglén C, Petzold
C, Tanner E, Brorson SH, Baekkevold ES, Önnerfjord P, Reinholt FP
and Heinegård D: The skeletal phenotype of chondroadherin deficient
mice. PLoS One. 8:e630802013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fukumoto S and Yamada Y: Review:
Extracellular matrix regulates tooth morphogenesis. Connect Tissue
Res. 46:220–226. 2005. View Article : Google Scholar
|
32
|
Iwamoto DV and Calderwood DA: Regulation
of integrin-mediated adhesions. Curr Opin Cell Biol. 36:41–47.
2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
De Franceschi N, Hamidi H, Alanko J,
Sahgal P and Ivaska J: Integrin traffic - the update. J Cell Sci.
128:839–852. 2015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhu Q, Safavi KE and Spångberg LS:
Integrin expression in human dental pulp cells and their role in
cell attachment on extracellular matrix proteins. J Endod.
24:641–644. 1998. View Article : Google Scholar
|
35
|
Degistirici O, Jaquiery C, Schönebeck B,
Siemonsmeier J, Götz W, Martin I and Thie M: Defining properties of
neural crest-derived progenitor cells from the apex of human
developing tooth. Tissue Eng Part A. 14:317–330. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mercurio AM: Laminin receptors: Achieving
specificity through cooperation. Trends Cell Biol. 5:419–423. 1995.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Aota S and Yamada KM: Fibronectin and cell
adhesion: Specificity of integrin-ligand interaction. Adv Enzymol
Relat Areas Mol Biol. 70:1–21. 1995.PubMed/NCBI
|
38
|
Popova SN, Barczyk M, Tiger CF, Beertsen
W, Zigrino P, Aszodi A, Miosge N, Forsberg E and Gullberg D:
Alpha11 beta1 integrin-dependent regulation of periodontal ligament
function in the erupting mouse incisor. Mol Cell Biol.
27:4306–4316. 2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Barczyk M, Bolstad AI and Gullberg D: Role
of integrins in the periodontal ligament: Organizers and
facilitators. Periodontol 2000. 63:29–47. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chen J, McCulloch CA and Sodek J: Bone
sialoprotein in developing porcine dental tissues: Cellular
expression and comparison of tissue localization with osteopontin
and osteonectin. Arch Oral Biol. 38:241–249. 1993. View Article : Google Scholar : PubMed/NCBI
|
41
|
Hannas AR, Pereira JC, Granjeiro JM and
Tjäderhane L: The role of matrix metalloproteinases in the oral
environment. Acta Odontol Scand. 65:1–13. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Beklen A, Al-Samadi A and Konttinen YT:
Expression of cathepsin K in periodontitis and in gingival
fibroblasts. Oral Dis. 21:163–169. 2015. View Article : Google Scholar
|
43
|
Sorsa T, Tjäderhane L, Konttinen YT,
Lauhio A, Salo T, Lee HM, Golub LM, Brown DL and Mäntylä P: Matrix
metalloproteinases: Contribution to pathogenesis, diagnosis and
treatment of periodontal inflammation. Ann Med. 38:306–321. 2006.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Tang BL: ADAMTS: A novel family of
extracellular matrix proteases. Int J Biochem Cell Biol. 33:33–44.
2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
Sone S, Nakamura M, Maruya Y, Takahashi I,
Mizoguchi I, Mayanagi H and Sasano Y: Expression of versican and
ADAMTS during rat tooth eruption. J Mol Histol. 36:281–288. 2005.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Lim WH, Liu B, Cheng D, Williams BO, Mah
SJ and Helms JA: Wnt signaling regulates homeostasis of the
periodontal ligament. J Periodontal Res. 49:751–759. 2014.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Cyster JG, Ansel KM, Reif K, Ekland EH,
Hyman PL, Tang HL, Luther SA and Ngo VN: Follicular stromal cells
and lymphocyte homing to follicles. Immunol Rev. 176:181–193. 2000.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Nakajima T, Amanuma R, Ueki-Maruyama K,
Oda T, Honda T, Ito H and Yamazaki K: CXCL13 expression and
follicular dendritic cells in relation to B-cell infiltration in
periodontal disease tissues. J Periodontal Res. 43:635–641. 2008.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Liu M, Sun Y, Liu Y, Yuan M, Zhang Z and
Hu W: Modulation of the differentiation of dental pulp stem cells
by different concentrations of β-glycerophosphate. Molecules.
17:1219–1232. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Ravindran S and George A: Dentin matrix
proteins in bone tissue engineering. Adv Exp Med Biol. 881:129–142.
2015. View Article : Google Scholar : PubMed/NCBI
|
51
|
Karlström E, Ek-Rylander B, Wendel M and
Andersson G: Isolation and phenotypic characterization of a
multinucleated tartrate-resistant acid phosphatase-positive bone
marrow macrophage. Exp Hematol. 39:339–350.e3. 2011. View Article : Google Scholar : PubMed/NCBI
|
52
|
Arner EC: Aggrecanase-mediated cartilage
degradation. Curr Opin Pharmacol. 2:322–329. 2002. View Article : Google Scholar : PubMed/NCBI
|