1
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI
|
2
|
Jackson WM, Nesti LJ and Tuan RS:
Potential therapeutic applications of muscle-derived mesenchymal
stem and progenitor cells. Expert Opin Biol Ther. 10:505–517. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Labusca LS, Botez P, Zugun Eloae F and
Mashayekhi K: Stem cells derived from osteoarthritic knee
mesenchymal tissues: A pilot study. Eur J Orthop Surg Traumatol.
23:169–176. 2013. View Article : Google Scholar : PubMed/NCBI
|
4
|
Murray IR, West CC, Hardy WR, James AW,
Park TS, Nguyen A, Tawonsawatruk T, Lazzari L, Soo C and Péault B:
Natural history of mesenchymal stem cells, from vessel walls to
culture vessels. Cell Mol Life Sci. 71:1353–1374. 2014. View Article : Google Scholar
|
5
|
Ogata Y, Mabuchi Y, Yoshida M, Suto EG,
Suzuki N, Muneta T, Sekiya I and Akazawa C: Purified human synovium
mesenchymal stem cells as a good resource for cartilage
regeneration. PloS One. 10:e01290962015. View Article : Google Scholar : PubMed/NCBI
|
6
|
De Bari C, Dell'Accio F, Tylzanowski P and
Luyten FP: Multipotent mesenchymal stem cells from adult human
synovial membrane. Arthritis Rheum. 44:1928–1942. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Imanishi Y, Miyagawa S, Kitagawa-Sakakida
S, Taketani S, Sekiya N and Sawa Y: Impact of synovial
membrane-derived stem cell transplantation in a rat model of
myocardial infarction. J Artif Organs. 12:187–193. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Bernardo ME, Pagliara D and Locatelli F:
Mesenchymal stromal cell therapy: A revolution in Regenerative
Medicine. Bone Marrow Transplant. 47:164–171. 2012. View Article : Google Scholar
|
9
|
Arufe MC, De la Fuente A, Fuentes I, de
Toro FJ and Blanco FJ: Chondrogenic potential of subpopulations of
cells expressing mesenchymal stem cell markers derived from human
synovial membranes. J Cell Biochem. 111:834–845. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Fan J, Varshney RR, Ren L, Cai D and Wang
DA: Synovium-derived mesenchymal stem cells: A new cell source for
musculoskeletal regeneration. Tissue Eng Part B Rev. 15:75–86.
2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
de Sousa EB, Casado PL, Moura Neto V,
Duarte ME and Aguiar DP: Synovial fluid and synovial membrane
mesenchymal stem cells: Latest discoveries and therapeutic
perspectives. Stem Cell Res Ther. 5:1122014. View Article : Google Scholar
|
12
|
Burkandt A, Katzer A, Thaler K, Von Baehr
V, Friedrich RE, Rüther W, Amling M and Zustin J: Proliferation of
the synovial lining cell layer in suggested metal hypersensitivity.
In vivo. 25:679–686. 2011.PubMed/NCBI
|
13
|
Chen K, Man C, Zhang B, Hu J and Zhu SS:
Effect of in vitro chondrogenic differentiation of autologous
mesenchymal stem cells on cartilage and subchondral cancellous bone
repair in osteoarthritis of temporomandibular joint. Int J Oral
Maxillofac Surg. 42:240–248. 2013. View Article : Google Scholar
|
14
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop Dj and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The International Society for Cellular
Therapy position statement. Cytotherapy. 8:315–317. 2006.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Nakagawa Y, Muneta T, Kondo S, Mizuno M,
Takakuda K, Ichinose S, Tabuchi T, Koga H, Tsuji K and Sekiya I:
Synovial mesenchymal stem cells promote healing after meniscal
repair in microminipigs. Osteoarthritis Cartilage. 23:1007–1017.
2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Katagiri H, Muneta T, Tsuji K, Horie M,
Koga H, Ozeki N, Kobayashi E and Sekiya I: Transplantation of
aggregates of synovial mesenchymal stem cells regenerates meniscus
more effectively in a rat massive meniscal defect. Biochem Biophys
Res Commun. 435:603–609. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hatsushika D, Muneta T, Nakamura T, Horie
M, Koga H, Nakagawa Y, Tsuji K, Hishikawa S, Kobayashi E and Sekiya
I: Repetitive allogeneic intraarticular injections of synovial
mesenchymal stem cells promote meniscus regeneration in a porcine
massive meniscus defect model. Osteoarthritis Cartilage.
22:941–950. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sakaguchi Y, Sekiya I, Yagishita K and
Muneta T: Comparison of human stem cells derived from various
mesenchymal tissues: Superiority of synovium as a cell source.
Arthritis Rheum. 52:2521–2529. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Harvanova D, Tothova T, Sarissky M,
Amrichova J and Rosocha J: Isolation and characterization of
synovial mesenchymal stem cells. Folia Biol. 57:119–124. 2011.
|
20
|
Nagase T, Muneta T, Ju YJ, Hara K, Morito
T, Koga H, Nimura A, Mochizuki T and Sekiya I: Analysis of the
chondrogenic potential of human synovial stem cells according to
harvest site and culture parameters in knees with medial
compartment osteoarthritis. Arthritis Rheum. 58:1389–1398. 2008.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Li Y, Cai H, Fang W, Meng Q, Wu Y, Li J,
Deng M and Long X: Triple-layered cell sheet for tissue-engineering
the synovial membrane of the temporomandibular joint. Cells Tissues
Organs. 199:150–158. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Vandenabeele F, De Bari C, Moreels M,
Lambrichts I, Dell'Accio F, Lippens PL and Luyten FP: Morphological
and immunocytochemical characterization of cultured fibroblast-like
cells derived from adult human synovial membrane. Arch Histol
Cytol. 66:145–153. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
24
|
Friedenstein AJ, Piatetzky S II and
Petrakova KV: Osteogenesis in transplants of bone marrow cells. J
Embryol Exp Morph. 16:381–390. 1966.PubMed/NCBI
|
25
|
Smith MD: The normal synovium. Open
Rheumatol J. 5:100–106. 2011. View Article : Google Scholar
|
26
|
O'Connell JX: Pathology of the synovium.
Am J Clin Pathol. 114:773–784. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Iwanaga T, Shikichi M, Kitamura H, Yanase
H and Nozawa-Inoue K: Morphology and functional roles of
synoviocytes in the joint. Arch Histol Cytol. 63:17–31. 2000.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kung M, Markantonis J, Nelson S and
Campbell P: The synovial lining and synovial fluid properties after
joint arthroplasty. Lubricants. 3:394–412. 2015. View Article : Google Scholar
|
29
|
Carvalho de Moraes LO, Tedesco RC,
Arraez-Aybar LA, Klein O, Merida-Velasco JR and Alonso LG:
Development of synovial membrane in the temporomandibular joint of
the human fetus. Eur J Histochemistry. 59:25692015. View Article : Google Scholar
|
30
|
El-Jawhari JJ, El-Sherbiny YM, Jones EA
and McGonagle D: Mesenchymal stem cells, autoimmunity and
rheumatoid arthritis. QJM. 107:505–514. 2014. View Article : Google Scholar : PubMed/NCBI
|
31
|
Khan IM, Bishop JC, Gilbert S and Archer
CW: Clonal chondroprogenitors maintain telomerase activity and Sox9
expression during extended monolayer culture and retain
chondrogenic potential. Osteoarthritis Cartilage. 17:518–528. 2009.
View Article : Google Scholar
|
32
|
Moskalewski S, Osiecka-Iwan A,
Jankowska-Steifer E and Hyc A: Synovial membrane asks for
independence. Folia Morphol. 73:395–398. 2014. View Article : Google Scholar
|
33
|
Dai L, Pessler F, Chen LX, Clayburne G and
Schumacher HR: Detection and initial characterization of synovial
lining fragments in synovial fluid. Rheumatology. 45:533–537. 2006.
View Article : Google Scholar
|
34
|
Fickert S, Fiedler J and Brenner RE:
Identification, quantification and isolation of mesenchymal
progenitor cells from osteoarthritic synovium by fluorescence
automated cell sorting. Osteoarthritis Cartilage. 1:790–800. 2003.
View Article : Google Scholar
|
35
|
Gullo F and De Bari C: Prospective
purification of a subpopulation of human synovial mesenchymal stem
cells with enhanced chondro-osteogenic potency. Rheumatology.
52:1758–1768. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mochizuki T, Muneta T, Sakaguchi Y, Nimura
A, Yokoyama A, Koga H and Sekiya I: Higher chondrogenic potential
of fibrous synovium-and adipose synovium-derived cells compared
with subcutaneous fat-derived cells: Distinguishing properties of
mesenchymal stem cells in humans. Arthritis Rheumatism. 54:843–853.
2006. View Article : Google Scholar
|
37
|
Dry H, Jorgenson K, Ando W, Hart DA, Frank
CB and Sen A: Effect of calcium on the proliferation kinetics of
synovium-derived mesenchymal stromal cells. Cytotherapy.
15:805–819. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
da Silva Meirelles L, Sand TT, Harman RJ,
Lennon DP and Caplan AI: MSC frequency correlates with blood vessel
density in equine adipose tissue. Tissue Eng Part A. 15:221–229.
2009. View Article : Google Scholar
|
39
|
Watt SM, Gullo F, van der Garde M,
Markeson D, Camicia R, Khoo CP and Zwaginga JJ: The angiogenic
properties of mesenchymal stem/stromal cells and their therapeutic
potential. Br Med Bull. 108:25–53. 2013. View Article : Google Scholar : PubMed/NCBI
|
40
|
Li X and Makarov SS: An essential role of
NF-κB in the 'tumor-like' phenotype of arthritic synoviocytes. Proc
Nat Acad Sci USA. 103:17432–17437. 2006. View Article : Google Scholar
|