1
|
Merikangas KR, Akiskal HS, Angst J,
Greenberg PE, Hirschfeld RM, Petukhova M and Kessler RC: Lifetime
and 12-month prevalence of bipolar spectrum disorder in the
National Comorbidity Survey replication. Arch Gen Psychiatry.
64:543–552. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
World Health Organization: Global burden
of disease 2004 update: Disability weights for diseases and
conditions. WHO; Geneva, Switzerland: 2004, Available at:
http://www.who.int/healthinfo/global_burden_disease/GBD2004_DisabilityWeights.pdf.
|
3
|
Seedat S, Scott KM, Angermeyer MC,
Berglund P, Bromet EJ, Brugha TS, Demyttenaere K, de Girolamo G,
Haro JM, Jin R, et al: Cross-national associations between gender
and mental disorders in the World Health Organization World Mental
Health Surveys. Arch Gen Psychiatry. 66:785–795. 2009. View Article : Google Scholar : PubMed/NCBI
|
4
|
Otte C, Gold SM, Penninx BW, Pariante CM,
Etkin A, Fava M, Mohr DC and Schatzberg AF: Major depressive
disorder. Nat Rev Dis Primers. 2:160652016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cheng LC, Pastrana E, Tavazoie M and
Doetsch F: miR-124 regulates adult neurogenesis in the
subventricular zone stem cell niche. Nat Neurosci. 12:399–408.
2009. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Pfau ML, Purushothaman I, Feng J, Golden
SA, Aleyasin H, Lorsch ZS, Cates HM, Flanigan ME, Menard C,
Heshmati M, et al: Integrative analysis of sex‑specific microRNA
networks following stress in mouse nucleus accumbens. Front Mol
Neurosci. 9:1442016. View Article : Google Scholar
|
7
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI
|
8
|
He L and Hannon GJ: MicroRNAs: Small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Schratt G: Fine-tuning neural gene
expression with microRNAs. Curr Opin Neurobiol. 19:213–219. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ul Hussain M: Micro-RNAs (miRNAs): Genomic
organisation, biogenesis and mode of action. Cell Tissue Res.
349:405–413. 2012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Forero DA, van der Ven K, Callaerts P and
Del-Favero J: miRNA genes and the brain: Implications for
psychiatric disorders. Hum Mutat. 31:1195–1204. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Miller BH and Wahlestedt C: MicroRNA
dysregulation in psychiatric disease. Brain Res. 1338:89–99. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Moreau MP, Bruse SE, David-Rus R, Buyske S
and Brzustowicz LM: Altered microRNA expression profiles in
postmortem brain samples from individuals with schizophrenia and
bipolar disorder. Biol Psychiatry. 69:188–193. 2011. View Article : Google Scholar :
|
14
|
Chan AW and Kocerha J: The Path to
microRNA therapeutics in psychiatric and neurodegenerative
disorders. Front Genet. 3:822012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dias C, Feng J, Sun H, Shao NY,
Mazei-Robison MS, Damez-Werno D, Scobie K, Bagot R, LaBonté B,
Ribeiro E, et al: β-catenin mediates stress resilience through
Dicer1/microRNA regulation. Nature. 516:51–55. 2014.PubMed/NCBI
|
16
|
Wingo AP, Almli LM, Stevens JS, Klengel T,
Uddin M, Li Y, Bustamante AC, Lori A, Koen N and Stein DJ: DICER1
and microRNA regulation in post-traumatic stress disorder with
comorbid depression. Nat Commun. 6:101062015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dwivedi Y: Pathogenetic and therapeutic
applications of microRNAs in major depressive disorder. Prog
Neuropsychopharmacol Biol Psychiatry. 64:341–348. 2016. View Article : Google Scholar
|
18
|
Kuss AW and Chen W: MicroRNAs in brain
function and disease. Curr Neurol Neurosci Rep. 8:190–197. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Dwivedi Y: Evidence demonstrating role of
microRNAs in the etiopathology of major depression. J Chem
Neuroanat. 42:142–156. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ha TY: MicroRNAs in human diseases: From
autoimmune diseases to skin, psychiatric and neurodegenerative
diseases. Immune Netw. 11:227–244. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mouillet-Richard S, Baudry A, Launay JM
and Kellermann O: MicroRNAs and depression. Neurobiol Dis.
46:272–278. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Smalheiser NR, Lugli G, Rizavi HS, Torvik
VI, Turecki G and Dwivedi Y: MicroRNA expression is down-regulated
and reorganized in prefrontal cortex of depressed suicide subjects.
PLoS One. 7:e332012012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fineberg SK, Kosik KS and Davidson BL:
MicroRNAs potentiate neural development. Neuron. 64:303–309. 2009.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Lagos-Quintana M, Rauhut R, Yalcin A,
Meyer J, Lendeckel W and Tuschl T: Identification of
tissue‑specific microRNAs from mouse. Curr Biol. 12:735–739. 2002.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lopez JP, Lim R, Cruceanu C, Crapper L,
Fasano C, Labonte B, Maussion G, Yang JP, Yerko V, Vigneault E, et
al: miR-1202 is a primate‑specific and brain‑enriched microRNA
involved in major depression and antidepressant treatment. Nat Med.
20:764–768. 2014. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Xu Y, Liu H, Li F, Sun N, Ren Y, Liu Z,
Cao X, Wang Y, Liu P and Zhang K: A polymorphism in the
microRNA-30e precursor associated with major depressive disorder
risk and P300 waveform. J Affect Disord. 127:332–336. 2010.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Saus E, Soria V, Escaramís G, Vivarelli F,
Crespo JM, Kagerbauer B, Menchón JM, Urretavizcaya M, Gratacòs M
and Estivill X: Genetic variants and abnormal processing of
pre-miR-182, a circadian clock modulator, in major depression
patients with late insomnia. Hum Mol Genet. 19:4017–4025. 2010.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Meerson A, Cacheaux L, Goosens KA,
Sapolsky RM, Soreq H and Kaufer D: Changes in brain MicroRNAs
contribute to cholinergic stress reactions. Journal of molecular
neuroscience: MN. 40:47–55. 2010. View Article : Google Scholar :
|
29
|
Vreugdenhil E, Verissimo CS, Mariman R,
Kamphorst JT, Barbosa JS, Zweers T, Champagne DL, Schouten T,
Meijer OC, de Kloet ER and Fitzsimons CP: MicroRNA 18 and 124a
down-regulate the glucocorticoid receptor: Implications for
glucocorticoid responsiveness in the brain. Endocrinology.
150:2220–2228. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets–update. Nucleic Acids Res. 41:D991–D995. 2013.
View Article : Google Scholar
|
31
|
Dweep H, Sticht C, Pandey P and Gretz N:
miRWalk–database: Prediction of possible miRNA binding sites by
'walking' the genes of three genomes. J Biomed Inform. 44:839–847.
2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kaufman J, Sullivan GM, Yang J, Ogden RT,
Miller JM, Oquendo MA, Mann JJ, Parsey RV and DeLorenzo C:
Quantification of the serotonin 1A receptor using PET:
Identification of a potential biomarker of major depression in
males. Neuropsychopharmacology. 40:1692–1699. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zheng P, Chen JJ, Zhou CJ, Zeng L, Li KW,
Sun L, Liu ML, Zhu D, Liang ZH and Xie P: Identification of
sex-specific urinary biomarkers for major depressive disorder by
combined application of NMR- and GC-MS-based metabonomics. Transl
Psychiatry. 6:e9552016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Belzeaux R, Bergon A, Jeanjean V, Loriod
B, Formisano-Tréziny C, Verrier L, Loundou A, Baumstarck-Barrau K,
Boyer L, Gall V, et al: Responder and nonresponder patients exhibit
different peripheral transcriptional signatures during major
depressive episode. Transl Psychiatry. 2:e1852012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ota KT, Liu RJ, Voleti B, Maldonado-Aviles
JG, Duric V, Iwata M, Dutheil S, Duman C, Boikess S, Lewis DA, et
al: REDD1 is essential for stress-induced synaptic loss and
depressive behavior. Nat Med. 20:531–535. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mainio A, Tuunanen S, Hakko H, Niemelä A,
Koivukangas J and Räsänen P: Decreased quality of life and
depression as predictors for shorter survival among patients with
low-grade gliomas: A follow-up from 1990 to 2003. Eur Arch
Psychiatry Clin Neurosci. 256:516–521. 2006. View Article : Google Scholar : PubMed/NCBI
|
37
|
Spiegel D and Giese-Davis J: Depression
and cancer: Mechanisms and disease progression. Biol Psychiatry.
54:269–282. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Horrobin DF and Bennett CN: Depression and
bipolar disorder: Relationships to impaired fatty acid and
phospholipid metabolism and to diabetes, cardiovascular disease,
immunological abnormalities, cancer, ageing and osteoporosis.
Possible candidate genes. Prostaglandins Leukot Essent Fatty Acids.
60:217–234. 1999. View Article : Google Scholar : PubMed/NCBI
|
39
|
Seznec J, Silkenstedt B and Naumann U:
Therapeutic effects of the Sp1 inhibitor mithramycin A in
glioblastoma. J Neurooncol. 101:365–377. 2011. View Article : Google Scholar
|
40
|
Elyakim E, Sitbon E, Faerman A, Tabak S,
Montia E, Belanis L, Dov A, Marcusson EG, Bennett CF, Chajut A, et
al: hsa-miR-191 is a candidate oncogene target for hepatocellular
carcinoma therapy. Cancer Res. 70:8077–8087. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Nebert DW, Dalton TP, Okey AB and Gonzalez
FJ: Role of aryl hydrocarbon receptor-mediated induction of the
CYP1 enzymes in environmental toxicity and cancer. J Biol Chem.
279:23847–23850. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Song MF, Dong JZ, Wang YW, He J, Ju X,
Zhang L, Zhang YH, Shi JF and Lv YY: CSF miR-16 is decreased in
major depression patients and its neutralization in rats induces
depression-like behaviors via a serotonin transmitter system. J
Affect Disord. 178:25–31. 2015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Makeyev EV, Zhang J, Carrasco MA and
Maniatis T: The MicroRNA miR-124 promotes neuronal differentiation
by triggering brain‑specific alternative pre‑mRNA splicing. Mol
Cell. 27:435–448. 2007. View Article : Google Scholar : PubMed/NCBI
|
44
|
Roy B, Dunbar M, Shelton RC and Dwivedi Y:
Identification of MicroRNA-124-3p as a putative epigenetic
signature of major depressive disorder. Neuropsychopharmacology.
42:864–875. 2017. View Article : Google Scholar
|
45
|
Bondarenko EA, Shadrina MI, Grishkina MN,
Druzhkova TA, Akzhigitov RG, Gulyaeva NV, Guekht AB and Slominsky
PA: Genetic analysis of BDNF, GNB3, MTHFR, ACE and APOE variants in
major and recurrent depressive disorders in Russia. Int J Med Sci.
13:977–983. 2016. View Article : Google Scholar :
|
46
|
He S, Liu X, Jiang K, Peng D, Hong W, Fang
Y, Qian Y, Yu S and Li H: Alterations of microRNA-124 expression in
peripheral blood mononuclear cells in pre- and post-treatment
patients with major depressive disorder. J Psychiatr Res. 78:65–71.
2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bahi A, Chandrasekar V and Dreyer JL:
Selective lentiviral-mediated suppression of microRNA124a in the
hippocampus evokes antidepressants-like effects in rats.
Psychoneuroendocrinology. 46:78–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Cao MQ, Chen DH, Zhang CH and Wu ZZ:
Screening of specific microRNA in hippocampus of depression model
rats and intervention effect of Chaihu Shugan San. Zhongguo Zhong
Yao Za Zhi. 38:1585–1589. 2013.In Chinese. PubMed/NCBI
|
49
|
Alimonti A, Carracedo A, Clohessy JG,
Trotman LC, Nardella C, Egia A, Salmena L, Sampieri K, Haveman WJ,
Brogi E, et al: Subtle variations in Pten dose determine cancer
susceptibility. Nat Genet. 42:454–458. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Bosker FJ, Hartman CA, Nolte IM, Prins BP,
Terpstra P, Posthuma D, van Veen T, Willemsen G, DeRijk RH, de Geus
EJ, et al: Poor replication of candidate genes for major depressive
disorder using genome-wide association data. Mol Psychiatry.
16:516–532. 2011. View Article : Google Scholar
|
51
|
Ferrari AJ, Charlson FJ, Norman RE,
Flaxman AD, Patten SB, Vos T and Whiteford HA: The epidemiological
modelling of major depressive disorder: Application for the Global
Burden of Disease Study 2010. PLoS One. 8:e696372013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Bocchio‑Chiavetto L, Maffioletti E,
Bettinsoli P, et al: Blood microRNA changes in depressed patients
during antidepressant treatment. Eur Neuropsychopharmacol.
23:602–611. 2013. View Article : Google Scholar
|
53
|
Kempton MJ, Salvador Z, Munafò MR, Geddes
JR, Simmons A, Frangou S and Williams SC: Structural neuroimaging
studies in major depressive disorder. Meta-analysis and comparison
with bipolar disorder. Arch Gen Psychiatry. 68:675–690. 2011.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Fan HM, Sun XY, Guo W, Zhong AF, Niu W,
Zhao L, Dai YH, Guo ZM, Zhang LY and Lu J: Differential expression
of microRNA in peripheral blood mononuclear cells as specific
biomarker for major depressive disorder patients. J Psychiatr Res.
59:45–52. 2014. View Article : Google Scholar : PubMed/NCBI
|