The role and mechanism of β‑arrestins in cancer invasion and metastasis (Review)
- Authors:
- Qing Song
- Qing Ji
- Qi Li
-
Affiliations: Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China - Published online on: November 27, 2017 https://doi.org/10.3892/ijmm.2017.3288
- Pages: 631-639
-
Copyright: © Song et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Gimenez LE, Kook S, Vishnivetskiy SA, Ahmed MR, Gurevich EV and Gurevich VV: Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors. J Biol Chem. 287:9028–9040. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sharma D and Parameswaran N: Multifaceted role of β-arrestins in inflammation and disease. Genes Immun. 16:5762015. View Article : Google Scholar | |
Smith JS and Rajagopal S: The β-arrestins: Multifunctional regulators of G protein-coupled receptors. J Biol Chem. 291:8969–8977. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Wang D, Wu J, Jin J, Wei W and Sun W: Involvement of β-arrestins in cancer progression. Mol Biol Rep. 40:1065–1071. 2013. View Article : Google Scholar | |
Gurevich EV and Gurevich VV: Arrestins: Ubiquitous regulators of cellular signaling pathways. Genome Biol. 7:2362006. View Article : Google Scholar : PubMed/NCBI | |
Ranjan R, Gupta P and Shukla AK: Gpcr signaling: β-arrestins kiss and remember. Curr Biol. 26:R285–R288. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kohout TA, Lin FS, Perry SJ, Conner DA and Lefkowitz RJ: Beta-arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA. 98:1601–1606. 2001.PubMed/NCBI | |
Enslen H, Lima-Fernandes E and Scott MG: Arrestins as regulatory hubs in cancer signalling pathways. Handb Exp Pharmacol. 219:405–425. 2014. View Article : Google Scholar | |
Rosanò L, Cianfrocca R, Masi S, Spinella F, Di Castro V, Biroccio A, Salvati E, Nicotra MR, Natali PG and Bagnato A: Beta-arrestin links endothelin a receptor to beta-catenin signaling to induce ovarian cancer cell invasion and metastasis. Proc Natl Acad Sci USA. 106:2806–2811. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rosanò L, Cianfrocca R, Tocci P, Spinella F, Di Castro V, Caprara V, Semprucci E, Ferrandina G, Natali PG and Bagnato A: Endothelin a receptor/β-arrestin signaling to the wnt pathway renders ovarian cancer cells resistant to chemotherapy. Cancer Res. 74:7453–7464. 2014. View Article : Google Scholar | |
Spinella F, Caprara V, Di Castro V, Rosanò L, Cianfrocca R, Natali PG and Bagnato A: Endothelin-1 induces the transactivation of vascular endothelial growth factor receptor-3 and modulates cell migration and vasculogenic mimicry in melanoma cells. J Mol Med (Berl). 91:395–405. 2013. View Article : Google Scholar | |
Eichel K, Jullié D and von Zastrow M: β-arrestin drives map kinase signalling from clathrin-coated structures after GPCR dissociation. Nature Cell Biol. 18:303–310. 2016. View Article : Google Scholar | |
Bourquard T, Landomiel F, Reiter E, Crépieux P, Ritchie DW, Azé J and Poupon A: Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/erk module complex. Sci Rep. 5:107602015. View Article : Google Scholar | |
Sun WY, Hu SS, Wu JJ, Huang Q, Ma Y, Wang QT, Chen JY and Wei W: Down-regulation of β-arrestin2 promotes tumour invasion and indicates poor prognosis of hepatocellular carcinoma. Sci Rep. 6:356092016. View Article : Google Scholar | |
Kim M, Suh YA, Oh JH, Lee BR, Kim J and Jang SJ: Corrigendum: KIF3A binds to β-arrestin for suppressing wnt/β-catenin signalling independently of primary cilia in lung cancer. Sci Rep. 7:467732017. View Article : Google Scholar | |
Lee SU, Ahn KS, Sung MH, Park JW, Ryu HW, Lee HJ, Hong ST and Oh SR: Indacaterol inhibits tumor cell invasiveness and mmp-9 expression by suppressing IKK/NF-κB activation. Mol Cells. 37:585–591. 2014. View Article : Google Scholar : PubMed/NCBI | |
Conner DA, Mathier MA, Mortensen RM, Christe M, Vatner SF, Seidman CE and Seidman JG: Beta-arrestin1 knockout mice appear normal but demonstrate altered cardiac responses to beta-adrenergic stimulation. Circ Res. 81:1021–1026. 1997. View Article : Google Scholar : PubMed/NCBI | |
Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG and Lin FT: Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 286:2495–2498. 1999. View Article : Google Scholar | |
Gu YJ, Sun WY, Zhang S, Wu JJ and Wei W: The emerging roles of β-arrestins in fibrotic diseases. Acta Pharmacol Sin. 36:1277–1287. 2015. View Article : Google Scholar : PubMed/NCBI | |
Philipp M, Evron T and Caron MG: The role of arrestins in development. Prog Mol Biol Transl Sci. 118:225–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJ, Ernst OP, Sligar SG and Gurevich VV: Monomeric rhodopsin is sufficient for normal rhodopsin kinase (grk1) phosphorylation and arrestin-1 binding. J Biol Chem. 286:1420–1428. 2011. View Article : Google Scholar : | |
Hamdan FF, Rochdi MD, Breton B, Fessart D, Michaud DE, Charest PG, Laporte SA and Bouvier M: Unraveling G protein-coupled receptor endocytosis pathways using real-time monitoring of agonist-promoted interaction between beta-arrestins and AP-2. J Biol Chem. 282:29089–29100. 2007. View Article : Google Scholar : PubMed/NCBI | |
Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB and Schubert C: Crystal structure of beta-arrestin at 1.9 A: Possible mechanism of receptor binding and membrane translocation. Structure. 9:869–880. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fan H, Liao Y, Tang Q, Liang L and Chen XY: Role of β-arrestins in the pathogenesis of inflammatory bowel disease. World Chinese J Digestol. 18:3114–3120. 2010. View Article : Google Scholar | |
Nobles KN, Guan Z, Xiao K, Oas TG and Lefkowitz RJ: The active conformation of beta-arrestin1: Direct evidence for the phosphate sensor in the n-domain and conformational differences in the active states of beta-arrestins1 and -2. J Biol Chem. 282:21370–21381. 2007. View Article : Google Scholar : PubMed/NCBI | |
Seo J, Tsakem EL, Breitman M and Gurevich VV: Identification of arrestin-3-specific residues necessary for JNK3 kinase activation. J Biol Chem. 286:27894–27901. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lin FT, Miller WE, Luttrell LM and Lefkowitz RJ: Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases. J Biol Chem. 274:15971–15974. 1999. View Article : Google Scholar : PubMed/NCBI | |
Johnson GL and Lapadat R: Mitogen-activated protein kinase pathways mediated by ERK, JNK, and 38 protein kinases. Science. 298:1911–1912. 2002. View Article : Google Scholar : PubMed/NCBI | |
Morrison DK: Map kinase pathways. Cold Spring Harb Perspect Bio. 4(pii): a0112542012. | |
Sebolt-Leopold JS and Herrera R: Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer. 4:937–947. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Li XM, Meinkoth J and Pittman RN: Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol. 151:483–494. 2000. View Article : Google Scholar : PubMed/NCBI | |
Okada T, Sinha S, Esposito I, Schiavon G, López-Lago MA, Su W, Pratilas CA, Abele C, Hernandez JM, Ohara M, et al: The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining RAS-MAPK signalling. Nat Cell Biol. 17:81–94. 2015. View Article : Google Scholar | |
Gu Y, Wang Q, Guo K, Qin W, Liao W, Wang S, Ding Y and Lin J: TUSC3 promotes colorectal cancer progression and epithelial-mesenchymal transition (EMT) through WNT/β-catenin and MAPK signalling. J Pathol. 239:60–71. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kaufhold S and Bonavida B: Central role of snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J Exp Clin Cancer Res. 33:622014. View Article : Google Scholar : PubMed/NCBI | |
Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, Gleave M and Wu H: Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72:1878–1889. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou G, Peng F, Zhong Y, Chen Y, Tang M and Li D: Rhein suppresses matrix metalloproteinase production by regulating the Rac1/ROS/MAPK/AP-1 pathway in human ovarian carcinoma cells. Int J Onco. 50:933–941. 2017. View Article : Google Scholar | |
Sangpairoj K, Vivithanaporn P, Apisawetakan S, Chongthammakun S, Sobhon P and Chaithirayanon K: RUNX1 regulates migration, invasion, and angiogenesis via 38 MAPK pathway in human glioblastoma. Cell Mol Neurobiol. 2016.Epub ahead of print. | |
Cepeda MA, Evered CL, Pelling JJH and Damjanovski S: Inhibition of MT1-MMP proteolytic function and ERK1/2 signalling influences cell migration and invasion through changes in MMP-2 and MMP-9 levels. J Cell Commun Signal. 11:167–179. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suyama K, Shapiro I, Guttman M and Hazan RB: A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell. 2:301–314. 2002. View Article : Google Scholar : PubMed/NCBI | |
Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL and Lefkowitz RJ: Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA. 98:2449–2454. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fong AM, Premont RT, Richardson RM, Yu YR, Lefkowitz RJ and Patel DD: Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci USA. 99:7478–7483. 2002. View Article : Google Scholar : PubMed/NCBI | |
Décaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP and Sachdev P: Cxcr7/cxcr4 heterodimer constitutively recruits beta-arrestin to enhance cell migration. J Biol Chem. 286:32188–32197. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu D, Li R, Wu J, Jiang L and Zhong HA: Drug design targeting the cxcr4/cxcr7/cxcl12 pathway. Curr Top Med Chem. 16:1441–1451. 2016. View Article : Google Scholar | |
Coggins L, Trakimas D, Chang SL, Ehrlich A, Ray P, Luker KE, Linderman JJ and Luker GD: Cxcr7 controls competition for recruitment of β-arrestin 2 in cells expressing both cxcr4 and cxcr7. PLoS On. 9:e983282014. View Article : Google Scholar | |
Zhang P, He X, Tan J, Zhou X and Zou L: β-arrestin2 mediates β-2 adrenergic receptor signaling inducing prostate cancer cell progression. Oncol Rep. 26:1471–1477. 2011.PubMed/NCBI | |
Buchanan FG, Gorden DL, Matta P, Shi Q, Matrisian LM and DuBois RN: Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proc Natl Acad Sci USA. 103:1492–1497. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lan T, Wang H, Zhang Z, Zhang M, Qu Y, Zhao Z, Fan X, Zhan Q, Song Y and Yu C: Downregulation of β-arrestin 1 suppresses glioblastoma cell malignant progression vis inhibition of src signaling. Exp Cell Res. 357:51–58. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ge L, Shenoy SK, Lefkowitz RJ and DeFea K: Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J Biol Chem. 279:55419–55424. 2004. View Article : Google Scholar : PubMed/NCBI | |
Parisis N, Metodieva G and Metodiev MV: Pseudopodial and β-arrestin-interacting proteomes from migrating breast cancer cells upon AR2 activation. J Proteomics. 80:91–106. 2013. View Article : Google Scholar : PubMed/NCBI | |
Girnita L, Shenoy SK, Sehat B, Vasilcanu R, Vasilcanu D, Girnita A, Lefkowitz RJ and Larsson O: Beta-arrestin and Mdm2 mediate IGF-1 receptor-stimulated ERK activation and cell cycle progression. J Biol Chem. 282:11329–11338. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schaal C and Chellappan SP: Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers. Mol Cancer Res. 12:14–23. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zhang Q, Li K, Gong Z, Liu Z, Xu Y, Swaney MH, Xiao K and Chen Y: Prognostic significance of USP33 in advanced colorectal cancer patients: New insights into β-arrestin-dependent ERK signaling. Oncotarget. 7:81223–81240. 2016.PubMed/NCBI | |
Li XX, Zheng HT, Huang LY, Shi DB, Peng JJ, Liang L and Cai SJ: Silencing of CXCR7 gene represses growth and invasion and induces apoptosis in colorectal cancer through ERK and β-arrestin pathways. Int J Oncol. 45:1649–1657. 2016. View Article : Google Scholar | |
Goertzen CG, Dragan M, Turley E, Babwah AV and Bhattacharya M: KISS1R signaling promotes invadopodia formation in human breast cancer cell via β-arrestin2/ERK. Cell Signal. 28:165–176. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dasgupta P, Rizwani W, Pillai S, Davis R, Banerjee S, Hug K, Lloyd M, Coppola D, Haura E and Chellappan SP: Arrb1-mediated regulation of E2F target genes in nicotine-induced growth of lung tumors. J Natl Cancer Inst. 103:317–333. 2011. View Article : Google Scholar : PubMed/NCBI | |
Korinek V, Barker N, Willert K, Molenaar M, Roose J, Wagenaar G, Markman M, Lamers W, Destree O and Clevers H: Two members of the tcf family implicated in wnt/beta-catenin signaling during embryogenesis in the mouse. Mol Cell Biol. 18:1248–1256. 1998. View Article : Google Scholar : PubMed/NCBI | |
Mythreye K and Blobe GC: The type iii TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci USA. 106:8221–8226. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim GH, Her JH and Han JK: Ryk cooperates with frizzled 7 to promote wnt11-mediated endocytosis and is essential for xenopus laevis convergent extension movements. J Cell Biol. 182:1073–1082. 2008. View Article : Google Scholar : PubMed/NCBI | |
Habas R, Dawid IB and He X: Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 17:295–309. 2008. View Article : Google Scholar | |
Kypta RM and Waxman J: Wnt/β-catenin signalling in prostate cancer. Nat Rev Urol. 9:418–428. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Zhu D, Yang S, Wang X, Xiong Z, Zhang Y, Brachova P and Leslie KK: Cytoplasmic metadherin (MTDH) provides survival advantage under conditions of stress by acting as RNA-binding protein. J Biol Chem. 287:4485–4491. 2012. View Article : Google Scholar : | |
Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu Q, Krause M, Samoylenko A and Vainio S: Wnt signaling in renal cell carcinoma. Cancers (Basel). 8(pii): E572016. View Article : Google Scholar | |
Chen Z, He X, Jia M, Liu Y, Qu D, Wu D, Wu P, Ni C, Zhang Z, Ye J, et al: β-catenin overexpression in the nucleus predicts progress disease and unfavourable survival in colorectal cancer: A meta-analysis. PLoS One. 8:e638542013. View Article : Google Scholar | |
Aminuddin A and Ng PY: Promising druggable target in head and neck squamous cell carcinoma: Wnt signaling. Front Pharmacol. 7:2442016. View Article : Google Scholar : PubMed/NCBI | |
Liang S, Zhang S, Wang P, Yang C, Shang C, Yang J and Wang J: Lncrna, TUG1 regulates the oral squamous cell carcinoma progression possibly via interacting with Wnt/beta-catenin signaling. Gene. 608:49–57. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang J, Liang L, Ouyang K, Li Z and Yi X: MALAT1 induces tongue cancer cells' EMT and inhibits apoptosis through wnt/β-catenin signaling pathway. J Oral Pathol Med. 46:98–105. 2017. View Article : Google Scholar | |
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
Howard S, Deroo T, Fujita Y and Itasaki N: A positive role of cadherin in Wnt/β-catenin signalling during epithelial-mesenchymal transition. PLoS On. 6:e238992011. View Article : Google Scholar | |
Huber MA, Kraut N and Beug H: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 17:548–558. 2005. View Article : Google Scholar : PubMed/NCBI | |
Felipe Lima J, Nofech-Mozes S, Bayani J and Bartlett JM: Emt in breast carcinoma-a review. J Clin Me. 5(pii): E652016. View Article : Google Scholar | |
Grant CM and Kyprianou N: Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression. Transl Androl Urol. 2:202–211. 2003. | |
Ko CJ, Huang CC, Lin HY, Juan CP, Lan SW, Shyu HY, Wu SR, Hsiao PW, Huang HP, Shun CT and Lee MS: Androgen-induced TMPRSS2 activates matriptase and promotes extracellular matrix degradation, prostate cancer cell invasion, tumor growth, and metastasis. Cancer Res. 75:2949–2960. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liao X, Thrasher JB, Pelling J, Holzbeierlein J, Sang QX and Li B: Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. Endocrinology. 144:1656–1663. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Jiao L, Hou J, Xu C, Wang L, Yu Y, Li Y, Yang C, Wang X and Sun Y: Dishevelled-2 silencing reduces androgen-dependent prostate tumor cell proliferation and migration and expression of Wnt-3a and matrix metalloproteinases. Mol Biol Rep. 40:4241–4250. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Liu T, Zhang S, Guo K and Liu Y: Oct4 induces EMT through LEF1/β-catenin dependent WNT signaling pathway in hepatocellular carcinoma. Oncol Lett. 13:2599–2606. 2017.PubMed/NCBI | |
Zhang Y: Ganodermalucidum (Reishi) suppresses proliferation and migration of breast cancer cells via inhibiting Wnt/β-catenin signaling. Biochem Biophys Res Commun. 488:679–684. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rosanò L, Cianfrocca R, Tocci P, Spinella F, Di Castro V, Spadaro F, Salvati E, Biroccio AM, Natali PG and Bagnato A: β-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced β-catenin signaling. Oncogene. 32:5066–5077. 2013. View Article : Google Scholar | |
Turm H, Maoz M, Katz V, Yin YJ, Offermanns S and Bar-Shavit R: Protease-activated receptor-1 (AR1) acts via a novel galpha13-dishevelled axis to stabilize beta-catenin levels. J Biol Chem. 285:15137–15148. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bonnans C, Flaceliere M, Grillet F, Dantec C, Desvignes JP, Pannequin J, Severac D, Dubois E, Bibeau F, Escriou V, et al: Essential requirement for β-arrestin2 in mouse intestinal tumors with elevated wnt signaling. Proc Natl Acad Sci USA. 109:3047–3052. 2012. View Article : Google Scholar | |
Duan X, Zhang T, Kong Z, Mai X, Lan C, Chen D, Liu Y, Zeng Z, Cai C, Deng T, et al: β-arrestin 1 promotes epithelial-mesenchymal transition via modulating GSK-3β/β-catenin pathway in prostate cancer cells. Biochem Biophys Res Commun. 479:204–210. 2016. View Article : Google Scholar : PubMed/NCBI | |
Witherow DS, Garrison TR, Miller WE and Lefkowitz RJ: Beta-arrestin inhibits NF-kappaB activity by means of its interaction with the Nf-KappaB inhibitor IkappaBalpha. Proc Natl Acad Sci USA. 101:8603–8607. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim YR, Kim IJ, Kang TW, Choi C, Kim KK, Kim MS, Nam KI and Jung C: HOXB13 downregulates intracellular zinc and increases NF-κB signaling to promote prostate cancer metastasis. Oncogene. 33:4558–4567. 2014. View Article : Google Scholar | |
Jiang L, Lin C, Song L, Wu J, Chen B, Ying Z, Fang L, Yan X, He M, Li J and Li M: Microrna-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-κB/IκBα negative feedback loop. J Clin Invest. 122:33–47. 2012. View Article : Google Scholar | |
Karin M: Nuclear factor-kappab in cancer development and progression. Nature. 441:431–436. 2006. View Article : Google Scholar : PubMed/NCBI | |
Karin M, Cao Y, Greten FR and Li ZW: Nf-kappaB in cancer: From innocent bystander to major culprit. Nat Rev Cancer. 2:301–310. 2002. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Han M and Wen JK: Acetylbritannilactone inhibits neointimal hyperplasia after balloon injury of rat artery by suppressing nuclear factor-{kappa}B activation. J Pharmacol Exp Ther. 324:292–298. 2008. View Article : Google Scholar | |
Ghosh S and Karin M: Missing pieces in the NF-kappaB puzzle. Cell. 109(Suppl): S81–S96. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kong D, Li Y, Wang Z, Banerjee S and Sarkar FH: Inhibition of angiogenesis and invasion by 3.3′-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res. 67:3310–3319. 2002. View Article : Google Scholar | |
Liao D, Zhong L, Duan T, Zhang RH, Wang X, Wang G, Hu K, Lv X and Kang T: Aspirin suppresses the growth and metastasis of osteosarcoma through the NF-κB pathway. Clin Cancer Res. 21:5349–5359. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cianfrocca R, Tocci P, Semprucci E, Spinella F, Di Castro V, Bagnato A and Rosanò L: β-arrestin 1 is required for endo-thelin-1-induced NF-κB activation in ovarian cancer cells. Life Sci. 118:179–184. 2014. View Article : Google Scholar : PubMed/NCBI | |
Raghuwanshi SK, Nasser MW, Chen X, Strieter RM and Richardson RM: Depletion of beta-arrestin-2 promotes tumor growth and angiogenesis in a murine model of lung cancer. J Immunol. 180:5699–5706. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Sun Y, Wu Y, Luan B, Wang Y, Qu B and Pei G: Identification of beta-arrestin2 as a G protein-coupled receptor-stimulated regulator of NF-kappaB pathways. Mol Cell. 14:303–317. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Tang Y, Teng L, Wu Y, Zhao X and Pei G: Association of beta-arrestin and TRAF6 negatively regulates toll-like receptor-interleukin 1 receptor signaling. Nat Immunol. 7:139–147. 2006. View Article : Google Scholar | |
Dranoff G: Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 4:11–22. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bedini A, Baiula M, Vincelli G, Formaggio F, Lombardi S, Caprini M and Spampinato S: Nociceptin/orphanin FQ antagonizes lipopolysaccharide-stimulated proliferation, migration and inflammatory signaling in human glioblastoma U87 cells. Biochem Pharmacol. 140:89–104. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lino MM and Merlo A: I3K inase signaling in glioblastoma. J Neurooncol. 103:417–427. 2011. View Article : Google Scholar | |
Chalhoub N and Baker SJ: PTEN and the I3-kinase pathway in cancer. Annu Rev Pathol. 4:127–150. 2017. View Article : Google Scholar | |
Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y, Zhang Y, Hua S, Fu Q, Zhao M, et al: Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/I3K/AKT and RAS-ERK signaling in oral squamous cell carcinoma. Cell Death Di. 5:e11552014. View Article : Google Scholar | |
Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, Zhao L, Qu H, Fan Y and Wu C: Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS On. 7:e395202012. View Article : Google Scholar | |
Jensen RL: Brain tumor hypoxia: Tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol. 92:317–335. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, Zhang P, Zhu H, Xu N and Liang S: STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 7:71400–71416. 2016.PubMed/NCBI | |
Wang Z, Qu L, Deng B, Sun X, Wu S, Liao J, Fan J and Peng Z: Styk1 promotes epithelial-mesenchymal transition and tumor metastasis in human hepatocellular carcinoma through Mek/Erk and I3K/AKT signaling. Sci Rep. 6:332052016. View Article : Google Scholar | |
Zhang Y, Yang CQ, Gao Y, Wang C, Zhang CL and Zhou XH: Knockdown of CXCR7 inhibits proliferation and invasion of osteosarcoma cells through inhibition of the I3K/AKT and β-arrestin pathways. Oncol Rep. 32:965–972. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zou L, Yang R, Chai J and Pei G: Rapid xenograft tumor progression in beta-arrestin1 transgenic mice due to enhanced tumor angiogenesis. FASEB J. 22:355–364. 2008. View Article : Google Scholar | |
Alvarez CJ, Lodeiro M, Theodoropoulou M, Camiña JP, Casanueva FF and Pazos Y: Obestatin stimulates aktsignalling in gastric cancer cells through beta-arrestin-mediated epidermal growth factor receptor transactivation. Endocr Relat Cancer. 16:599–611. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nawaz Z, Patil V, Paul Y, Hegde AS, Arivazhagan A, Santosh V and Somasundaram K: Pi3 kinase pathway regulated mirnome in glioblastoma: Identification of mir-326 as a tumour suppressor miRNA. Mol Cance. 15:742016. View Article : Google Scholar | |
Lima-Fernandes E, Enslen H, Camand E, Kotelevets L, Boularan C, Achour L, Benmerah A, Gibson LC, Baillie GS, Pitcher JA, et al: Distinct functional outputs of PTEN signalling are controlled by dynamic association with β-arrestins. EMBO J. 30:2557–2568. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Guo G, Song J, Cai Z, Yang J, Chen Z, Wang Y, Huang Y and Gao Q: B7-H3 promotes the migration and invasion of human bladder cancer cells via the I3K/AKT/STAT3 signaling pathway. J Cancer. 8:816–824. 2017. View Article : Google Scholar : | |
Tayeh M, Nilwarangoon S, Mahabusarakum W and Watanapokasin R: Anti-metastatic effect of rhodomyrtone from rhodomyrtus tomentosa on human skin cancer cells. Int J Oncol. 50:1035–1043. 2017. View Article : Google Scholar : PubMed/NCBI | |
Scott MG, Le Rouzic E, Périanin A, Pierotti V, Enslen H, Benichou S, Marullo S and Benmerah A: Differential nucleo-cytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem. 277:37693–37701. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, Zhang M, Bao G, Wang F, Zhang X, et al: A nuclear function of beta-arrestin1 in GPCR signaling: Regulation of histone acetylation and gene transcription. Cell. 123:833–847. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim JI, Lakshmikanthan V, Frilot N and Daaka Y: Prostaglandin E2 promotes lung cancer cell migration via EP4-betaArrestin1-c-src signalsome. Mol Cancer Res. 8:569–577. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lin EW, Karakasheva TA, Hicks PD, Bass AJ and Rustgi AK: The tumor microenvironment in esophageal cancer. Oncogene. 35:5337–5349. 2016. View Article : Google Scholar : PubMed/NCBI | |
Clark AG and Vignjevic DM: Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol. 36:13–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ji RC: Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. Cancer Lett. 346:6–16. 2014. View Article : Google Scholar | |
Whalen EJ, Rajagopal S and Lefkowitz RJ: Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med. 17:126–139. 2011. View Article : Google Scholar | |
Bologna Z, Teoh JP, Bayoumi AS, Tang Y and Kim IM: Biased G protein-coupled receptor signaling: New player in modulating physiology and pathology. Biomol Ther (Seoul). 25:12–25. 2017. View Article : Google Scholar |