1
|
Kajstura J, Urbanek K, Perl S, Hosoda T,
Zheng H, Ogórek B, Ferreira-Martins J, Goichberg P, Rondon-Clavo C,
Sanada F, et al: Cardiomyogenesis in the adult human heart. Circ
Res. 107:305–315. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Beltrami AP, Barlucchi L, Torella D, Baker
M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, et
al: Adult cardiac stem cells are multipotent and support myocardial
regeneration. Cell. 114:763–776. 2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Oh H, Bradfute SB, Gallardo TD, Nakamura
T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry
DJ, et al: Cardiac progenitor cells from adult myocardium: Homing,
differentiation, and fusion after infarction. Proc Natl Acad Sci
USA. 100:12313–12318. 2003. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bergmann O, Bhardwaj RD, Bernard S, Zdunek
S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA,
Druid H, et al: Evidence for cardiomyocyte renewal in humans.
Science. 324:98–102. 2009. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bergmann O, Zdunek S, Alkass K, Druid H,
Bernard S and Frisén J: Identification of cardiomyocyte nuclei and
assessment of ploidy for the analysis of cell turnover. Exp Cell
Res. 317:188–194. 2011. View Article : Google Scholar
|
6
|
Leri A, Quaini F, Kajstura J and Anversa
P: Myocyte death and myocyte regeneration in the failing human
heart. Ital Heart J. 2(Suppl 3): 12S–14S. 2001.PubMed/NCBI
|
7
|
Walsh S, Pontén A, Fleischmann BK and
Jovinge S: Cardiomyocyte cell cycle control and growth estimation
in vivo-an analysis based on cardiomyocyte nuclei. Cardiovasc Res.
86:365–373. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kanawa M, Igarashi A, Ronald VS, Higashi
Y, Kurihara H, Sugiyama M, Saskianti T, Pan H and Kato Y:
Age-dependent decrease in the chondrogenic potential of human bone
marrow mesenchymal stromal cells expanded with fibroblast growth
factor-2. Cytotherapy. 15:1062–1072. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Portmann-Lanz CB, Schoeberlein A, Huber A,
Sager R, Malek A, Holzgreve W and Surbek DV: Placental mesenchymal
stem cells as potential autologous graft for pre- and perinatal
neuroregeneration. Am J Obstet Gynecol. 194:664–673. 2006.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Fukuhara S, Tomita S, Yamashiro S,
Morisaki T, Yutani C, Kitamura S and Nakatani T: Direct cell-cell
interaction of cardiomyocytes is key for bone marrow stromal cells
to go into cardiac lineage in vitro. J Thorac Cardiovasc Surg.
125:1470–1480. 2003. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rangappa S, Entwistle JW, Wechsler AS and
Kresh JY: Cardiomyocyte-mediated contact programs human mesenchymal
stem cells to express cardiogenic phenotype. J Thorac Cardiovasc
Surg. 126:124–132. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Makino S, Fukuda K, Miyoshi S, Konishi F,
Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, et al:
Cardiomyocytes can be generated from marrow stromal cells in vitro.
J Clin Invest. 103:697–705. 1999. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Valiunas V, Doronin S, Valiuniene L,
Potapova I, Zuckerman J, Walcott B, Robinson RB, Rosen MR, Brink PR
and Cohen IS: Human mesenchymal stem cells make cardiac connexins
and form functional gap junctions. J Physiol. 555:617–626. 2004.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu Y, Song J, Liu W, Wan Y, Chen X and Hu
C: Growth and differentiation of rat bone marrow stromal cells:
Does 5-azacytidine trigger their cardiomyogenic differentiation?
Cardiovasc Res. 58:460–468. 2003. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li K, Li SZ, Zhang YL and Wang XZ: The
effects of dan-shen root on cardiomyogenic differentiation of human
placenta-derived mesenchymal stem cells. Biochem Biophys Res
Commun. 415:147–151. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A,
Prockop DJ and Horwitz E: Minimal criteria for defining multipotent
mesenchymal stromal cells. The international society for cellular
therapy position statement. Cytotherapy. 8:315–317. 2006.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Gojo S, Gojo N, Takeda Y, Mori T, Abe H,
Kyo S, Hata J and Umezawa A: In vivo cardiovasculogenesis by direct
injection of isolated adult mesenchymal stem cells. Exp Cell Res.
288:51–59. 2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Orlic D, Kajstura J, Chimenti S, Jakoniuk
I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM,
et al: Bone marrow cells regenerate infarcted myocardium. Nature.
410:701–705. 2001. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Murry CE, Soonpaa MH, Reinecke H, Nakajima
H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH,
Poppa V, et al: Haematopoietic stem cells do not transdifferentiate
into cardiac myocytes in myocardial infarcts. Nature. 428:664–668.
2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li YG, Song L, Liu M, Hu ZB and Wang ZT:
Advancement in analysis of Salviae miltiorrhizae Radix et Rhizoma
(Danshen). J Chromatogr A. 1216:1941–1953. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
The State Pharmacopoeia Commission of
China. Chinese Pharmacopeia. 1:762015.
|
22
|
Li CQ, Xu WL, Shen ZG and Wang JZ:
Comparison of the contents of 5 active components in Salvia
miltiorrhiza from different habitats. Proceedings of Chemistry of
Medicinal Plant and Analysis of Active Components of Traditional
Chinese Medicine Seminar; 113–115. 2008.
|
23
|
Shang Q, Xu H and Huang L: Tanshinone IIA:
A promising natural cardioprotective agent. Evid Based Complement
Alternat Med. 2012:7164592012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jiang WD, Yu YZ, Liu WW, Chen YH, Wang YP
and Huang TC: Effects of sodium tanshinone II-A sulfonate and
propranolol on coronary collaterals in acutely infarcted dogs
(author's transl). Zhongguo Yao Li Xue Bao. 2:29–33. 1981.In
Chinese. PubMed/NCBI
|
25
|
Li CZ, Yang SC and Zhao FD: Effects of
tanshinone II-A sulfonate on thrombus formation, platelet and blood
coagulation in rats and mice. Zhongguo Yao Li Xue Bao. 5:39–42.
1984.In Chinese. PubMed/NCBI
|
26
|
Fan GW, Gao XM, Wang H, Zhu Y, Zhang J, Hu
LM, Su YF, Kang LY and Zhang BL: The anti-inflammatory activities
of Tanshinone IIA, an active component of TCM, are mediated by
estrogen receptor activation and inhibition of iNOS. J Steroid
Biochem Mol Biol. 113:275–280. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kang YJ, Jin UH, Chang HW, Son JK, Lee SH,
Son KH, Chang YC, Lee YC and Kim CH: Inhibition of microsomal
triglyceride transfer protein expression and atherogenic risk
factor apolipoprotein B100 secretion by tanshinone IIA in HepG2
cells. Phytother Res. 22:1640–1645. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Adams JD, Wang R, Yang J and Lien EJ:
Preclinical and clinical examinations of Salvia miltiorrhiza and
its tanshinones in ischemic conditions. Chin Med. 1:32006.
View Article : Google Scholar
|
29
|
Hardt SE and Sadoshima J: Glycogen
synthase kinase-3beta: A novel regulator of cardiac hypertrophy and
development. Circ Res. 90:1055–1063. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Cho J, Rameshwar P and Sadoshima J:
Distinct roles of glycogen synthase kinase (GSK)-3alpha and
GSK-3beta in mediating cardiomyocyte differentiation in murine bone
marrow-derived mesenchymal stem cells. J Biol Chem.
284:36647–36658. 2009. View Article : Google Scholar : PubMed/NCBI
|