1
|
Giudice LC and Kao LC: Endometriosis.
Lancet. 364:1789–1799. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Liang Y, Li Y, Liu K, Chen P and Wang D:
Expression and significance of WNT4 in ectopic and eutopic
endometrium of human endometriosis. Reprod Sci. 23:379–385. 2016.
View Article : Google Scholar
|
3
|
Gupta D, Hull ML, Fraser I, Miller L,
Bossuyt PM, Johnson N and Nisenblat V: Endometrial biomarkers for
the non-invasive diagnosis of endometriosis. Cochrane Database Syst
Rev. 4:CD0121652016.PubMed/NCBI
|
4
|
Zhang Z, Chen P, Guo C, Meng X and Wang D:
Effect of LIM kinase 1 overexpression on behaviour of
endometriosis-derived stromal cells. Cell Tissue Res. 359:885–893.
2015. View Article : Google Scholar
|
5
|
Harada T, Kaponis A, Iwabe T, Taniguchi F,
Makrydimas G, Sofikitis N, Paschopoulos M, Paraskevaidis E and
Terakawa N: Apoptosis in human endometrium and endometriosis. Hum
Reprod Update. 10:29–38. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ulukus M, Cakmak H and Arici A: The role
of endometrium in endometriosis. J Soc Gynecol Investig.
13:467–476. 2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen Q, Zhang C, Chen Y, Lou J and Wang D:
Identification of endometriosis-related genes by representational
difference analysis of cDNA. Aust N Z J Obstet Gynaecol.
52:140–145. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xu YL, Wang DB, Liu QF, Chen YH and Yang
Z: Silencing of cofilin-1 gene attenuates biological behaviours of
stromal cells derived from eutopic endometria of women with
endometriosis. Hum Reprod. 25:2480–2488. 2010. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mitchell B, Dhingra JK and Mahalingam M:
BRAF and epithelial-mesenchymal transition: Lessons from papillary
thyroid carcinoma and primary cutaneous melanoma. Adv Anat Pathol.
23:244–271. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rahman MA, Salajegheh A, Smith RA and Lam
AK: B-Raf mutation: a key player in molecular biology of cancer.
Exp Mol Pathol. 95:336–342. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lopes JP and Fonseca E: BRAF gene mutation
in the natural history of papillary thyroid carcinoma: diagnostic
andprognostic implications. Acta Med Port. 24(Suppl 4): 855–868.
2011.
|
12
|
Ewing I, Pedder-Smith S, Franchi G,
Ruscica M, Emery M, Vax V, Garcia E, Czirják S, Hanzély Z, Kola B,
et al: A mutation and expression analysis of the oncogene BRAF in
pituitary adenomas. Clin Endocrinol (Oxf). 66:348–352. 2007.
View Article : Google Scholar
|
13
|
Yotova IY, Quan P, Leditznig N, Beer U,
Wenzl R and Tschugguel W: Abnormal activation of Ras/Raf/MAPK and
RhoA/ROCKII signalling pathways in eutopic endometrial stromal
cells of patients with endometriosis. Hum Reprod. 26:885–897. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Chu DM, Wang DB, Li Y and Liu KR:
Expression and significance of BRAF gene in ectopic endometrium of
women with endometriosis. Zhongguo Yike Daxue Xuebao. 43:790–793.
2014.In Chinese.
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
16
|
Wang Y, Li Y, Yang Z, Liu K and Wang D:
Genome-wide microarray analysis of long non-coding RNAs in eutopic
secretory endometrium with endometriosis. Cell Physiol Biochem.
37:2231–2245. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ikawa S, Fukui M, Ueyama Y, Tamaoki N,
Yamamoto T and Toyoshima K: B-raf, a new member of the raf family,
is activated by DNA rearrangement. Mol Cell Biol. 8:2651–2654.
1988. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sclafani F, Gullo G, Sheahan K and Crown
J: BRAF mutations in melanoma and colorectal cancer: a single
oncogenic mutation with different tumour phenotypes and clinical
implications. Crit Rev Oncol Hematol. 87:55–68. 2013. View Article : Google Scholar
|
19
|
Roskoski R Jr: RAF
protein-serine/threonine kinases: Structure and regulation. Biochem
Biophys Res Commun. 399:313–317. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cohen Y, Goldenberg-Cohen N, Parrella P,
Chowers I, Merbs SL, Pe'er J and Sidransky D: Lack of BRAF mutation
in primary uveal melanoma. Invest Ophthalmol Vis Sci. 44:2876–2878.
2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rimoldi D, Salvi S, Liénard D, Lejeune FJ,
Speiser D, Zografos L and Cerottini JC: Lack of BRAF mutations in
uveal melanoma. Cancer Res. 63:5712–5715. 2003.PubMed/NCBI
|
22
|
Zannoni GF, Improta G, Chiarello G,
Pettinato A, Petrillo M, Scollo P, Scambia G and Fraggetta F:
Mutational status of KRAS, NRAS, and BRAF in primary clear cell
ovarian carcinoma. Virchows Arch. 465:193–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Newell P, Toffanin S, Villanueva A, Chiang
DY, Minguez B, Cabellos L, Savic R, Hoshida Y, Lim KH,
Melgar-Lesmes P, et al: Ras pathway activation in hepatocellular
carcinoma and anti-tumoral effect of combined sorafenib and
rapamycin in vivo. J Hepatol. 51:725–733. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Feng L, Li M, Zhang QP, Piao ZA, Wang ZH
and Lv S: Utility of BRAF protein overexpression in predicting the
metastasis potential of papillary thyroid carcinoma. Oncol Lett.
2:59–63. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Erhardt P, Schremser EJ and Cooper GM:
B-Raf inhibits programmed cell death downstream of cytochrome c
release from mitochondria by activating the MEK/Erk pathway. Mol
Cell Biol. 19:5308–5315. 1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tanami H, Imoto I, Hirasawa A, Yuki Y,
Sonoda I, Inoue J, Yasui K, Misawa-Furihata A, Kawakami Y and
Inazawa J: Involvement of overexpressed wild-type BRAF in the
growth of malignant melanoma cell lines. Oncogene. 23:8796–8804.
2004. View Article : Google Scholar : PubMed/NCBI
|
27
|
Vestergaard AL, Thorup K, Knudsen UB, Munk
T, Rosbach H, Poulsen JB, Guldberg P and Martensen PM: Oncogenic
events associated with endometrial and ovarian cancers are rare in
endometriosis. Mol Hum Reprod. 17:758–761. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tan X, Wang S, Zhu L, Wu C, Yin B, Zhao J,
Yuan J, Qiang B and Peng X: cAMP response element-binding protein
promotes gliomagenesis by modulating the expression of oncogenic
microRNA-23a. Proc Natl Acad Sci USA. 109:15805–15810. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Kong WQ, Bai R, Liu T, Cai CL, Liu M, Li X
and Tang H: MicroRNA-182 targets cAMP-responsive element-binding
protein 1 and suppresses cell growth in human gastric
adenocarcinoma. FEBS J. 279:1252–1260. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang Z, Tsuchiya H, Zhang Y, Hartnett ME
and Wang L: MicroRNA-433 inhibits liver cancer cell migration by
repressing the protein expression and function of cAMP response
element-binding protein. J Biol Chem. 288:28893–28899. 2013.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chhabra A, Fernando H, Watkins G, Mansel
RE and Jiang WG: Expression of transcription factor CREB1 in human
breast cancer and its correlation with prognosis. Oncol Rep.
18:953–958. 2007.PubMed/NCBI
|
32
|
Seo HS, Liu DD, Bekele BN, Kim MK, Pisters
K, Lippman SM, Wistuba II and Koo JS: Cyclic AMP response
element-binding protein overexpression: A feature associated with
negative prognosis in never smokers with non-small cell lung
cancer. Cancer Res. 68:6065–6073. 2008. View Article : Google Scholar : PubMed/NCBI
|