1
|
Chi KR: Epidemiology: Rising in the East.
Nature. 540:S100–S102. 2016. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Nq SC, Tang W, Ching JY, Wong M, Chow CM,
Hui AJ, Wong TC, Leung VK, Tsang SW, Yu HH, et al: Incidence and
phenotype of inflammatory bowel disease based on results from the
Asia-pacific Crohn’s and colitis epidemiology study.
Gastroenterology. 145:158–165.e2. 2013. View Article : Google Scholar
|
3
|
Wang YF, Ouyang Q and Hu RW: Progression
of inflammatory bowel disease in China. J Dig Dis. 11:76–82. 2010.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Dixon LJ, Kabi A, Nickerson KP and
McDonald C: Combinatorial effects of diet and genetics on
inflammatory bowel disease pathogenesis. Inflamm Bowel Dis.
21:912–922. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Park JH, Peyrin-Biroulet L, Eisenhut M and
Shin JI: IBD immunopahogenesis: A comprehensive review of
inflammatory molecules. Autoimmun Rev. 16:416–426. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Ng SC, Bernstein CN, Vatn MH, Lakatos PL,
Loftus EV Jr, Tysk C, O’Morain C, Moum B and Colombel JF;
Epidemiology and Natural History Task Force of the International
Organization of Inflammatory Bowel Disease (IOIBD): Geographical
variability and environmental risk factors in inflammatory bowel
disease. Gut. 62:630–649. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xia W, Yu Q, Riederer B, Singh AK,
Engelhardt R, Yeruva S, Song P, Tian DA, Soleiman M and Seidler U:
The distinct roles of anion transporters Slc26a3 (DRA) and Slc26a6
(PAT-1) in fluid and electrolyte absorption in the murine small
intestine. Pflugers Arch. 466:1541–1556. 2014. View Article : Google Scholar :
|
8
|
Wedenoja S, Pekansaari E, Höglund P,
Mäkelä S, Holmberg C and Kere J: Update on SLC26A3 mutations in
congenital chloride diarrhoea. Hum Mutat. 32:715–722. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Wedenoja S, Höglund P and Holmberg C:
Review article: The clinical management of congenital chloride
diarrhoea. Aliment Pharmacol Ther. 31:477–485. 2010. View Article : Google Scholar
|
10
|
Xiao F, Yu Q, Li J, Johansson ME, Singh
AK, Xia W, Riederer B, Engelhardt R, Montrose M, Soleimani M, et
al: Slc26a3 deficiency is associated with loss of colonic HCO3 (−)
secretion, absence of a firm mucus layer and barrier impairment in
mice. Acta Physiol (Oxf). 211:161–175. 2014. View Article : Google Scholar
|
11
|
Farkas K, Yeruva S, Rakonczay Z Jr,
Ludolph L, Molnar T, Nagy F, Szepes Z, Schnur A, Wittmann T,
Hubricht J, et al: New therapeutic targets in ulcerative colitis:
The importance of ion transporters in the human colon. Inflamm
Bowel Dis. 17:884–898. 2011. View Article : Google Scholar
|
12
|
Peake ST, Bernardo D, Mann ER, Al-Hassi
HO, Knight SC and Hart AL: Mechanisms of action of anti-tumor
necrosis factor-α agents in Crohn’s disease. Inflamm Bowel Dis.
19:1546–1555. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Günther C, Neumann H, Neurath MF and
Becker C: Apoptosis, necrosis and necroptosis: Cell death
regulation in the intestinal epithelium. Gut. 62:1062–1071. 2013.
View Article : Google Scholar
|
14
|
Fries W, Muja C, Crisafulli C, Cuzzocrea S
and Mazzon E: Dynamics of enterocyte tight junctions: Effect of
experimental colitis and two different anti-TNF strategies. Am J
Physiol Gastrointest Liver Physiol. 294:G938–G947. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xiao F, Juric M, Li J, Riederer B, Yeruva
S, Singh AK, Zheng L, Glage S, Kollias G, Dudeja P, et al: Loss of
downregulated in adenoma (DRA) impairs mucosal HCO3(−) secretion in
murine ileocolonic inflammation. Inflamm Bowel Dis. 18:101–111.
2012. View Article : Google Scholar
|
16
|
Juric M, Xiao F, Amashen S, May O, Wahl K,
Bantel H, Manns MP, Seidler U and Bachmann O: Increased epithelial
permeability is the primary cause for bicarbonate loss in inflamed
murine colon. Inflamm Bowel Dis. 19:904–911. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sutherland LR, Martin F, Greer S, Robinson
M, Greenberger N, Saibil F, Martin T, Sparr J, Prokipchuk E and
Borgen L: 5-Aminosalicylic acid enema in the treatment of distal
ulcerative colitis, proctosigmoiditis, and proctitis.
Gastroenterology. 92:1894–1898. 1987. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yeruva S, Chodisetti G, Luo M, Chen M,
Cinar A, Ludolph L, Lünnemann M, Goldstein J, Singh AK, Riederer B,
et al: Evidengce for a causal link between adaptor protein PDZK1
downregulation and Na+/H+ exchanger NHE3
dysfunction in human and murine colitis. Pflugers Arch.
467:1795–1807. 2015. View Article : Google Scholar
|
19
|
Yu Q, Liu ZY, Chen Q and Lin JS: Mcl-1 as
a potential therapeutic target for human hepatocellular carcinoma.
J Huazhong Univ Sci Technolog Med Sci. 36:494–500. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liva KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
21
|
Kolios G: Animal models of inflammatory
bowel disease: How useful are they really? Curr Opin Gastroenterol.
32:251–257. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Priyamvada S, Gomes R, Gill RK, Saksena S,
Alfefai WA and Dudeja PK: Mechanisms underlying dysregulation of
electrolyte absorption in inflammatory bowel disease associated
diarrhea. Inflamm Bowel Dis. 21:2926–2935. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Barkas F, Liberopoulos E, Kei A and Elisaf
M: Electrolyte and acid-base disorders in inflammatory bowel
disease. Ann Gastroenterol. 26:23–28. 2013.PubMed/NCBI
|
24
|
Yang H, Jiang W, Furth EE, Wen X, Katz JP,
Sellon RK, Silberg DG, Antalis TM, Schweinfest CW and Wu GD:
Intestinal inflammation reduces expression of DRA, a transporter
responsible for congential chloride diarrhea. Am J Physiol.
275:G1445–G1453. 1998.PubMed/NCBI
|
25
|
Gill RK, Borthakur A, Hodges K, Turner JR,
Clayburgh DR, Saksena S, Zaheer A, Ramaswamy K, Hecht G and Dudeja
PK: Mechanisms underlying inhibition of intestinal apical Cl/OH
exchange following infection with enteropathogenic E. coli. J Clin
Invest. 117:428–437. 2007. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Kumar A, Anbazhagan AN, Coffing H,
Chatterjee I, Priyamvada S, Gujral T, Saksena S, Gill RK, Alrefai
WA, Borthakur A and Dudeja PK: Lactobacillus acidphilus counteracts
inhibition of NHE3 and DRA expression and alleviates diarrheal
phenotype in mice infected with Citrobacter rodentium. Am J Physiol
Gastrointest Liver Physiol. 311:G817–G826. 2016. View Article : Google Scholar
|
27
|
Alrefai WA, Wen X, Jiang W, Katz JP,
Steinbrecher KA, Cohen MB, Williams IR, Dudeja PK and Wu GD:
Molecular cloning and promoter analysis of downregulated in adenoma
(DRA). Am J Physiol Gastrointest Liver Physiol. 293:G923–G934.
2007. View Article : Google Scholar : PubMed/NCBI
|
28
|
Saksena S, Singla A, Goyal S, Katyal S,
Bansal N, Gill RK, Alrefai WA, Ramaswamy K and Dudeja PK:
Mechanisms of transcriptional modulation of the human anion
exchanger SLC26A3 gene expression by IFN-{gamma}. Am J Physiol
Gastrointest Liver Physiol. 298:G159–G166. 2010. View Article : Google Scholar
|
29
|
Olesen CM, Coskun M, Peyrin-Biroulet L and
Nielsen OH: Mechanisms behind efficacy of tumor necrosis factor
inhibitors in inflammatory bowel disease. Pharmacol Ther.
159:110–119. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Soufli I, Toumi R, Rafa H and
Touil-Boukoffa C: Overview of cytokines and nitric oxide
involvement in immune-pathogenesis of inflammatory bowel diseases.
World J Gastrointest Pharmacol Ther. 7:353–360. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Strober W and Fuss IJ: Proinflammatory
cytokine in the pathogenesis of inflammatory bowel disease.
Gastroenterology. 140:1756–1767. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
te Velde AA, de Kort F, Sterrenburg E,
Pronk I, ten Kate FJ, Hommes DW and van Deventer SJ: Comparative
analysis of colonic gene expression of three experimental colitis
models mimicking inflammatory bowel disease. Inflamm Bowel Dis.
13:325–330. 2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Sambuy Y, De Angelis I, Ranaldi G, Scarino
ML, Stammati A and Zucco F: The Caco-2 cell line as a model of the
intestinal barrier: influence of cell and culture-related factors
on Caco-2 cell functional characteristics. Cell Biol Toxicol.
21:1–26. 2005. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang H, Chao K, Ng SC, Bai AH, Yu Q, Yu J,
Li M, Cui Y, Chen M, Hu JF and Zhang S: Pro-inflammatory miR-223
mediates the cross-talk between the IL23 pathway and the intestinal
barrier in inflammatory bowel disease. Genome Biol. 17:582016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Schaubeck M and Haller D: Reciprocal
interaction of diet and microbiome in inflammatory bowel disease.
Curr Opin Gastroenterol. 31:464–470. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Xavier RJ and Podolsky DK: Unravelling the
pathogenesis of inflammatory bowel disease. Nature. 448:427–434.
2007. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sandborn WJ, van Assche G, Reinisch W,
Colombel JF, D’Haens G, Wolf DC, Kron M, Tighe MB, Lazar A and
Thakkar RB: Adalimumab induces and maintains clinical remission in
patients with moderate-to-severe ulcerative colitis.
Gastroenterology. 142:257–265.e1-3. 2012. View Article : Google Scholar
|
38
|
Hanauer SB, Feagan BG, Lichtenstein GR,
Mayer LF, Schreiber S, Colombel JF, Rachmilewitz D, Wolf DC, Olson
A, Bao W, et al: Maintenance infliximab for Crohn’s disease: The
ACCENT 1 randomized trial. Lancet. 359:1541–1549. 2002. View Article : Google Scholar : PubMed/NCBI
|