1
|
Wegner M, Neddermann D,
Piorunska-Stolzmann M and Jagodzinski PP: Role of epigenetic
mechanisms in the development of chronic complications of diabetes.
Diabetes Res Clin Pract. 105:164–175. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
van der Leeuw J, Beulens JW, van Dieren S,
Schalkwijk CG, Glatz JF, Hofker MH, Verschuren WM, Boer JM, van der
Graaf Y, Visseren FL, et al: Novel biomarkers to improve the
prediction of cardiovascular event risk in type 2 diabetes
mellitus. J Am Heart Assoc. 5:52016. View Article : Google Scholar
|
3
|
Ndrepepa G, Colleran R, Luttert A, Braun
S, Cassese S, Kufner S, Hieber J, Fusaro M, Laugwitz KL, Schunkert
H, et al: Prognostic value of gamma-glutamyl transferase in
patients with diabetes mellitus and coronary artery disease. Clin
Biochem. 49:1127–1132. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Minha S, Bental T, Assali A, Vaknin-Assa
H, Lev EI, Rechavia E, Battler A and Kornowski R: A comparative
analysis of major clinical outcomes using drug-eluting stents
versus bare metal stents in diabetic versus nondiabetic patients.
Catheter Cardiovasc Interv. 78:710–717. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Myers GR and Weintraub WS: Coronary artery
disease: revascularization strategies for patients with CAD and
diabetes. Nat Rev Cardiol. 7:364–366. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Beckman JA, Paneni F, Cosentino F and
Creager MA: Diabetes and vascular disease: pathophysiology,
clinical consequences, and medical therapy: part II. Eur Heart J.
34:2444–2452. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
El-Atat FA, Stas SN, McFarlane SI and
Sowers JR: The relationship between hyperinsulinemia, hypertension
and progressive renal disease. J Am Soc Nephrol. 15:2816–2827.
2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Nakamura A, Monma Y, Kajitani S, Noda K,
Nakajima S, Endo H, Takahashi T and Nozaki E: Effect of glycemic
state on postprandial hyperlipidemia and hyperinsulinemia in
patients with coronary artery disease. Heart Vessels. 31:1446–1455.
2016. View Article : Google Scholar :
|
9
|
Lee KK, Fortmann SP, Fair JM, Iribarren C,
Rubin GD, Varady A, Go AS, Quertermous T and Hlatky MA: Insulin
resistance independently predicts the progression of coronary
artery calcification. Am Heart J. 157:939–945. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun HJ, Zhao MX, Ren XS, Liu TY, Chen Q,
Li YH, Kang YM, Wang JJ and Zhu GQ: Salusin-β promotes vascular
smooth muscle cell migration and intimal hyperplasia after vascular
injury via ROS/NFκB/MMP-9 pathway. Antioxid Redox Signal.
24:1045–1057. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu Z, Han Y, Liu J, Jiang F, Hu H, Wang Y,
Liu Q, Gong Y and Li X: miR-135b5p and miR-499a-3p promote cell
proliferation and migration in atherosclerosis by directly
targeting MEF2C. Sci Rep. 5:122762015. View Article : Google Scholar
|
12
|
Chen J, Zhang J, Xu L, Xu C, Chen S, Yang
J and Jiang H: Inhibition of neointimal hyperplasia in the rat
carotid artery injury model by a HMGB1 inhibitor. Atherosclerosis.
224:332–339. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen
C, Cai Y, Huang H, Yang Y, Liu Y, et al: LincRNA-p21 regulates
neointima formation, vascular smooth muscle cell proliferation,
apoptosis, and atherosclerosis by enhancing p53 activity.
Circulation. 130:1452–1465. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Caccamo G, Bonura F, Bonura F, Vitale G,
Novo G, Evola S, Evola G, Grisanti MR and Novo S: Insulin
resistance and acute coronary syndrome. Atherosclerosis.
211:672–675. 2010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang X, Yu C, Zhang B and Wang Y: The
injurious effects of hyperinsulinism on blood vessels. Cell Biochem
Biophys. 69:213–218. 2014. View Article : Google Scholar
|
16
|
Dubin SB: Characterization of amniotic
fluid lamellar bodies by resistive-pulse counting: relationship to
measures of fetal lung maturity. Clin Chem. 35:612–616.
1989.PubMed/NCBI
|
17
|
Tateishi K, Okada Y, Kallin EM and Zhang
Y: Role of Jhdm2a in regulating metabolic gene expression and
obesity resistance. Nature. 458:757–761. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Osawa T, Tsuchida R, Muramatsu M,
Shimamura T, Wang F, Suehiro J, Kanki Y, Wada Y, Yuasa Y, Aburatani
H, et al: Inhibition of histone demethylase JMJD1A improves
anti-angiogenic therapy and reduces tumor-associated macrophages.
Cancer Res. 73:3019–3028. 2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Parrish JK, Sechler M, Winn RA and
Jedlicka P: The histone demethylase KDM3A is a
microRNA-22-regulated tumor promoter in Ewing sarcoma. Oncogene.
34:257–262. 2015. View Article : Google Scholar :
|
20
|
Jing C, Xu L, Zhang J, Hu X, Chen S, Hu Q,
Xu C and Jiang H: GW24-e2386 down-regulation of histone demethylase
KDM3A attenuates balloon injury-induced neointimal hyperplasia in
diabetic rats through modulation of epigenetic histone lysine 9
di-methylation. Heart. 2013:A9–A10. 2013.
|
21
|
Qi H, Jing Z, Xiaolin W, Changwu X,
Xiaorong H, Jian Y, Jing C and Hong J: Histone demethylase JMJD2A
inhibition attenuates neointimal hyperplasia in the carotid
arteries of balloon-injured diabetic rats via transcriptional
silencing: inflammatory gene expression in vascular smooth muscle
cells. Cell Physiol Biochem. 37:719–734. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
23
|
Cavicchioli MG, Guerbali CC, Ochiai C,
Silva RM, Camara G and Petry TB: The contribution of diabetes
education in the treatment of people with type 2 diabetes and risk
of cardiovascular disease. Curr Atheroscler Rep. 18:442016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Forbes JM and Cooper ME: Mechanisms of
diabetic complications. Physiol Rev. 93:137–188. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Patel A, MacMahon S, Chalmers J, Neal B,
Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, et
al ADVANCE Collaborative Group: Intensive blood glucose control and
vascular outcomes in patients with type 2 diabetes. N Engl J Med.
358:2560–2572. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Duckworth W, Abraira C, Moritz T, Reda D,
Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, et
al VADT Investigators: Glucose control and vascular complications
in veterans with type 2 diabetes. N Engl J Med. 360:129–139. 2009.
View Article : Google Scholar
|
27
|
Abhijit S, Bhaskaran R, Narayanasamy A,
Chakroborty A, Manickam N, Dixit M, Mohan V and Balasubramanyam M:
Hyperinsulinemia-induced vascular smooth muscle cell (VSMC)
migration and proliferation is mediated by converging mechanisms of
mitochondrial dysfunction and oxidative stress. Mol Cell Biochem.
373:95–105. 2013. View Article : Google Scholar
|
28
|
Shiny A, Regin B, Mohan V and
Balasubramanyam M: Coordinated augmentation of NFAT and NOD
signaling mediates proliferative VSMC phenotype switch under
hyperinsulinemia. Atherosclerosis. 246:257–266. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Martínez-Hervás S, Vinué A, Núñez L,
Andrés-Blasco I, Piqueras L, Real JT, Ascaso JF, Burks DJ, Sanz MJ
and González-Navarro H: Insulin resistance aggravates
atherosclerosis by reducing vascular smooth muscle cell survival
and increasing CX3CL1/CX3CR1 axis. Cardiovasc Res. 103:324–336.
2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gomez C, Martinez L, Mesa A, Duque JC,
Escobar LA, Pham SM and Vazquez-Padron RI: Oxidative stress induces
early-onset apoptosis of vascular smooth muscle cells and neointima
formation in response to injury. Biosci Rep. 35:352015. View Article : Google Scholar
|
31
|
Ceriello A, Ihnat MA and Thorpe JE:
Clinical review 2: the ‘metabolic memory’: is more than just tight
glucose control necessary to prevent diabetic complications? J Clin
Endocrinol Metab. 94:410–415. 2009. View Article : Google Scholar
|
32
|
Lv H, Yu Z, Zheng Y, Wang L, Qin X, Cheng
G and Ci X: Isovitexin exerts anti-inflammatory and anti-oxidant
activities on lipopolysaccharide-induced acute lung injury by
inhibiting MAPK and NF-κB and activating HO-1/Nrf2 pathways. Int J
Biol Sci. 12:72–86. 2016. View Article : Google Scholar :
|
33
|
Zhang X, Liu J, Pang X, Zhao J, Wang S and
Wu D: Aldosterone induces C-reactive protein expression via
MR-ROS-MAPK-NF-κB signal pathway in rat vascular smooth muscle
cells. Mol Cell Endocrinol. 395:61–68. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen J, Xu J, Li J, Du L, Chen T, Liu P,
Peng S, Wang M and Song H: Epigallocatechin-3-gallate attenuates
lipopoly-saccharide-induced mastitis in rats via suppressing MAPK
mediated inflammatory responses and oxidative stress. Int
Immunopharmacol. 26:147–152. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu K, Zhao W, Gao X, Huang F, Kou J and
Liu B: Diosgenin ameliorates palmitate-induced endothelial
dysfunction and insulin resistance via blocking IKKβ and IRS-1
pathways. Atherosclerosis. 223:350–358. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang J, Chen J, Yang J, Xu CW, Pu P, Ding
JW and Jiang H: Resveratrol attenuates oxidative stress induced by
balloon injury in the rat carotid artery through actions on the
ERK1/2 and NF-kappa B pathway. Cell Physiol Biochem. 31:230–241.
2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang X, Wang X, Wu T, Li B, Liu T, Wang
R, Liu Q, Liu Z, Gong Y and Shao C: Isoliensinine induces apoptosis
in triple-negative human breast cancer cells through ROS generation
and p38 MAPK/JNK activation. Sci Rep. 5:125792015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wronkowitz N, Görgens SW, Romacho T,
Villalobos LA, Sánchez-Ferrer CF, Peiró C, Sell H and Eckel J:
Soluble DPP4 induces inflammation and proliferation of human smooth
muscle cells via protease-activated receptor 2. Biochim Biophys
Acta. 1842:1613–1621. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Perez-Vizcaino F, Bishop-Bailley D, Lodi
F, Duarte J, Cogolludo A, Moreno L, Bosca L, Mitchell JA and Warner
TD: The flavonoid quercetin induces apoptosis and inhibits JNK
activation in intimal vascular smooth muscle cells. Biochem Biophys
Res Commun. 346:919–925. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Yamane K, Toumazou C, Tsukada Y,
Erdjument-Bromage H, Tempst P, Wong J and Zhang Y: JHDM2A, a
JmjC-containing H3K9 demethylase, facilitates transcription
activation by androgen receptor. Cell. 125:483–495. 2006.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Wellmann S, Bettkober M, Zelmer A, Seeger
K, Faigle M, Eltzschig HK and Bührer C: Hypoxia upregulates the
histone demethylase JMJD1A via HIF-1. Biochem Biophys Res Commun.
372:892–897. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Uemura M, Yamamoto H, Takemasa I, Mimori
K, Hemmi H, Mizushima T, Ikeda M, Sekimoto M, Matsuura N, Doki Y,
et al: Jumonji domain containing 1A is a novel prognostic marker
for colorectal cancer: in vivo identification from hypoxic tumor
cells. Clin Cancer Res. 16:4636–4646. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Lockman K, Taylor JM and Mack CP: The
histone demethylase, Jmjd1a, interacts with the myocardin factors
to regulate SMC differentiation marker gene expression. Circ Res.
101:e115–e123. 2007. View Article : Google Scholar : PubMed/NCBI
|