1
|
Forsea AM, Del Marmol V, de Vries E,
Bailey EE and Geller AC: Melanoma incidence and mortality in
Europe: New estimates, persistent disparities. Br J Dermatol.
167:1124–1130. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Smetana K Jr, Dvoøánková B, Szabo P,
Strnad H and Koláø M: Role of stromal fibroblasts in cancer
originated from squamous epithelia. Dermal Fibroblasts:
Histological perspectives, characterization and role in disease.
Bai X: Nova Sciences Publishers; New York, NY: pp. 83–94. 2013
|
3
|
Kulesa PM, Kasemeier-Kulesa JC, Teddy JM,
Margaryan NV, Seftor EA, Seftor RE and Hendrix MJ: Reprogramming
metastatic melanoma cells to assume a neural crest cell-like
phenotype in an embryonic microenvironment. Proc Natl Acad Sci USA.
103:3752–3757. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kodet O, Dvořánková B, Krejčí E, Szabo P,
Dvořák P, Štork J, Krajsová I, Dundr P, Smetana K Jr and Lacina L:
Cultivation-dependent plasticity of melanoma phenotype. Tumour
Biol. 34:3345–3355. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kodet O, Lacina L, Krejčí E, Dvořánková B,
Grim M, Štork J, Kodetová D, Vlček Č, Šáchová J, Kolář M, et al:
Melanoma cells influence the differentiation pattern of human
epidermal keratinocytes. Mol Cancer. 14:12015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li L, Dragulev B, Zigrino P, Mauch C and
Fox JW: The invasive potential of human melanoma cell lines
correlates with their ability to alter fibroblast gene expression
in vitro and the stromal microenvironment in vivo. Int J Cancer.
125:1796–1804. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Comito G, Giannoni E, Di Gennaro P, Segura
CP, Gerlini G and Chiarugi P: Stromal fibroblasts synergize with
hypoxic oxidative stress to enhance melanoma aggressiveness. Cancer
Lett. 324:31–41. 2012. View Article : Google Scholar : PubMed/NCBI
|
8
|
Dvořánková B, Szabo P, Lacina L, Kodet O,
Matoušková E and Smetana K Jr: Fibroblasts prepared from different
types of malignant tumors stimulate expression of luminal marker
keratin 8 in the EM-G3 breast cancer cell line. Histochem Cell
Biol. 137:679–685. 2012. View Article : Google Scholar
|
9
|
Yin M, Soikkeli J, Jahkola T, Virolainen
S, Saksela O and Hölttä E: TGF-β signaling, activated stromal
fibroblasts, and cysteine cathepsins B and L drive the invasive
growth of human melanoma cells. Am J Pathol. 181:2202–2216. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Krasagakis K, Thölke D, Farthmann B,
Eberle J, Mansmann U and Orfanos CE: Elevated plasma levels of
transforming growth factor (TGF)-beta1 and TGF-beta2 in patients
with disseminated malignant melanoma. Br J Cancer. 77:1492–1494.
1998. View Article : Google Scholar : PubMed/NCBI
|
11
|
Dvořánková B, Szabo P, Lacina L, Gal P,
Uhrova J, Zima T, Kaltner H, André S, Gabius HJ, Sykova E and
Smetana K Jr: Human galectins induce conversion of dermal
fibroblasts into myofibroblasts and production of extracellular
matrix: Potential application in tissue engineering and wound
repair. Cells Tissues Organs. 194:469–480. 2011. View Article : Google Scholar
|
12
|
Krasagakis K, Garbe C, Schrier PI and
Orfanos CE: Paracrine and autocrine regulation of human melanocyte
and melanoma cell growth by transforming growth factor beta in
vitro. Anticancer Res. 14:2565–2571. 1994.PubMed/NCBI
|
13
|
Balch CM, Gershenwald JE, Soong SJ and
Thompson JF: Update on the melanoma staging system: The importance
of sentinel node staging and primary tumor mitotic rate. J Surg
Oncol. 104:379–385. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lacina L, Smetana K Jr, Dvoránková B,
Pytlík R, Kideryová L, Kucerová L, Plzáková Z, Stork J, Gabius HJ
and André S: Stromal fibroblasts from basal cell carcinoma affect
phenotype of normal keratinocytes. Br J Dermatol. 156:819–829.
2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kolář M, Szabo P, Dvořánková B, Lacina L,
Gabius HJ, Strnad H, Sáchová J, Vlček C, Plzák J, Chovanec M, et
al: Upregulation of IL-6, IL-8 and CXCL-1 production in dermal
fibroblasts by normal/malignant epithelial cells in vitro:
Immunohistochemical and transcriptomic analyses. Biol Cell.
104:738–751. 2012. View Article : Google Scholar
|
16
|
Therasse P, Arbuck SG, Eisenhauer EA,
Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van
Oosterom AT, Christian MC and Gwyther SG: New guidelines to
evaluate the response to treatment in solid tumors European
organization for research and treatment of cancer, National Cancer
institute of the United States, National Cancer Institute of
Canada. J Natl Cancer Inst. 92:205–216. 2000. View Article : Google Scholar : PubMed/NCBI
|
17
|
Salvatore G, Chiappetta G, Nikiforov YE,
Decaussin-Petrucci M, Fusco A, Carney JA and Santoro M: Molecular
profile of hyalinizing trabecular tumours of the thyroid: High
prevalence of RET/PTC rearrangements and absence of B-raf and N-ras
point mutations. Eur J Cancer. 41:816–821. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sykorova V, Dvorakova S, Ryska A, Vcelak
J, Vaclavikova E, Laco J, Kodetova D, Kodet R, Cibula A, Duskova J,
et al: BRAFV600E mutation in the pathogenesis of a large series of
papillary thyroid carcinoma in Czech Republic. J Endocrinol Invest.
33:318–324. 2010. View Article : Google Scholar
|
19
|
Smyth GK: Linear models and empirical
bayes methods for assessing differential expression in microarray
experiments. Stat Appl Genet Mol Biol. 3:Article 3. 2004.
View Article : Google Scholar
|
20
|
Gentleman RC, Carey VJ, Bates DM, Bolstad
B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al:
Bioconductor: Open software development for computational biology
and bioinformatics. Genome Biol. 5:R802004. View Article : Google Scholar : PubMed/NCBI
|
21
|
Valach J, Fík Z, Strnad H, Chovanec M,
Plzák J, Cada Z, Szabo P, Sáchová J, Hroudová M, Urbanová M, et al:
Smooth muscle actin-expressing stromal fibroblasts in head and neck
squamous cell carcinoma: Increased expression of galectin-1 and
induction of poor prognosis factors. Int J Cancer. 131:2499–2508.
2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Culhane AC, Thioulouse J, Perrière G and
Higgins DG: MADE4: An R package for multivariate analysis of gene
expression data. Bioinformatics. 21:2789–2790. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wu H, Caffo B, Jaffee HA, Irizarry RA and
Feinberg AP: Redefining CpG islands using hidden Markov models.
Biostatistics. 11:499–514. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z,
Meirelles GV, Clark NR and Ma'ayan A: Enrichr: Interactive and
collaborative HTML5 gene list enrichment analysis tool. BMC
Bioinformatics. 14:1282013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Driskell RR and Watt FM: Understanding
fibroblast heterogeneity in the skin. Trends Cell Biol. 25:92–99.
2015. View Article : Google Scholar
|
26
|
Tomasek JJ, GAbbiani G, Hinz B, Chaponnier
C and Brown RA: Myofibroblasts and mechano-regulation of connective
tissue remodelling. Nat Rev Mol Cell Biol. 3:349–363. 2002.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Whipple CA and Brinckerhoff CE:
BRAF(V600E) melanoma cells secrete factors that activate stromal
fibroblasts and enhance tumourigenicity. Br J Cancer.
111:1625–1633. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Fedorenko IV, Wargo JA, Flaherty KT,
Messina JL and Smalley KSM: BRAF inhibition generates a host-tumor
niche that mediates therapeutic escape. J Invest Dermatol.
135:3115–3124. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hirata E, Girotti MR, Viros A, Hooper S,
Spencer-Dene B, Matsuda M, Larkin J, Marais R and Sahai E:
Intravital imaging reveals how BRAF inhibition generates
drug-tolerant microenvi-ronments with high integrin β1/FAK
signaling. Cancer Cell. 27:574–588. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Fedorenko IV and Smalley KS: The
complexity of microenvironment-mediated drug resistance. Genes
Cancer. 6:367–368. 2015.PubMed/NCBI
|
31
|
De Wever O, Hendrix A, De Boeck A,
Eertmans F, Westbroek W, Braems G and Bracke ME: Single cell and
spheroid collagen type I invasion assay. Methods Mol Biol.
1070:13–35. 2014. View Article : Google Scholar
|
32
|
Varley KE, Gertz J, Bowling KM, Parker SL,
Reddy TE, Pauli-Behn F, Cross MK, Williams BA, Stamatoyannopoulos
JA, Crawford GE, et al: Dynamic DNA methylation across diverse
human cell lines and tissues. Genome Res. 23:555–567. 2013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Drabsch Y and ten Dijke P: TGF-β
signalling and its role in cancer progression and metastasis.
Cancer Metastasis Rev. 31:553–568. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Guo L, Kuroda N, Nakayama H, Miyazaki E,
Hayashi Y, Toi M, Hiroi M and Enzan H: Cytokeratin positive
subserosal positive subserosal myofibroblasts in gastroduodenal
ulcer; another type of myofibroblasts. Histol Histopathol.
21:697–704. 2006.PubMed/NCBI
|
35
|
Seip K, Fleten KG, Barkovskaya A, Nygaard
V, Haugen MH, Engesæter BØ, Mælandsmo GM and Prasmickaite L:
Fibroblast-induced switching to the mesenchymal-like phenotype and
PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors.
Oncotarget. 7:19997–20015. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Johnson DB, Menzies AM, Zimmer L, Eroglu
Z, Ye F, Zhao S, Rizos H, Sucker A, Scolyer RA, Gutzmer R, et al:
Acquired BRAF inhibitor resistance: A multicenter meta-analysis of
the spectrum and frequencies, clinical behaviour, and phenotypic
associations of resistance mechanisms. Eur J Cancer. 51:2792–2799.
2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Llopiz D, Dotor J, Casares N, Bezunartea
J, Díaz-Valdés N, Ruiz M, Aranda F, Berraondo P, Prieto J, Lasarte
JJ, et al: Peptide inhibitors of transforming growth factor-beta
enhance the effi-cacy of antitumor immunotherapy. Int J Cancer.
125:2614–2623. 2009. View Article : Google Scholar : PubMed/NCBI
|
38
|
Morris JC, Tan AR, Olencki TE, Shapiro GI,
Dezube BJ, Reiss M, Hsu FJ, Berzofsky JA and Lawrence DP: Phase I
study of GC1008 (fresolimumab): A human anti-transforming growth
factor-beta (TGFβ) monoclonal antibody in patients with advanced
malignant melanoma or renal cell carcinoma. PLoS One. 9:903532014.
View Article : Google Scholar
|
39
|
Mifková A, Kodet O, Szabo P, Kučera J,
Dvořánková B, André S, Koripelly G, Gabius HJ, Lehn JM and Smetana
K Jr: Synthetic polyamine BPA-C8 inhibits TGF-β1-mediated
conversion of human dermal fibroblast to myofibroblasts and
establishment of galectin-1-rich extracellular matrix in vitro.
Chembiochem. 15:1465–1470. 2014. View Article : Google Scholar
|
40
|
Jobe NP, Rösel D, Dvořánková B, Kodet O,
Lacina L, Mateu R, Smetana K and Brábek J: Simultaneous blocking of
IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human
melanoma cell invasiveness. Histochem Cell Biol. 146:205–217. 2016.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Harbst K, Lauss M, Cirenajwis H, Winter C,
Howlin J, Törngren T, Kvist A, Nodin B, Olsson E, Häkkinen J, et
al: Molecular and genetic diversity in the metastatic process of
melanoma. J Pathol. 233:39–50. 2014. View Article : Google Scholar : PubMed/NCBI
|
42
|
Patrick E, Schramm SJ, Ormerod JT, Scolyer
RA, Mann GJ, Mueller S and Yang JY: A multi-step classifier
addressing cohort heterogeneity improves performance of prognostic
biomarkers in three cancer types. Oncotarget. 8:2807–2815. 2017.
View Article : Google Scholar :
|
43
|
Maley CC, Aktipis A, Graham TA, Sottoriva
A, Boddy AM, Janiszewska M, Silva AS, Gerlinger M, Yuan Y, Pienta
KJ, et al: Classifying the evolutionary and ecological features of
neoplasms. Nat Rev Cancer. 17:605–619. 2017. View Article : Google Scholar : PubMed/NCBI
|