1
|
Ryan JJ, Huston J, Kutty S, Hatton ND,
Bowman L, Tian L, Herr JE, Johri AM and Archer SL: Right
ventricular adaptation and failure in pulmonary arterial
hypertension. Can J Cardiol. 31:391–406. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Vonk-Noordegraaf A, Haddad F, Chin KM,
Forfia PR, Kawut SM, Lumens J, Naeije R, Newman J, Oudiz RJ,
Provencher S, et al: Right heart adaptation to pulmonary arterial
hypertension: Physiology and pathobiology. J Am Coll Cardiol.
62(Suppl 25): D22–D33. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hardziyenka M, Campian ME, Reesink HJ,
Surie S, Bouma BJ, Groenink M, Klemens CA, Beekman L, Remme CA,
Bresser P and Tan HL: Right ventricular failure following chronic
pressure overload is associated with reduction in left ventricular
mass: Evidence for atrophic remodeling. J Am Coll Cardiol.
57:921–928. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hsia HH and Haddad F: Pulmonary
hypertension: A stage for ventricular interdependence? J Am Coll
Cardiol. 59:2203–2205. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lee-Chiong TL Jr and Matthay RA: Pulmonary
hypertension and cor pulmonale in COPD. Semin Respir Crit Care Med.
24:263–272. 2003. View Article : Google Scholar
|
6
|
Montani D, Gunther S, Dorfmuller P, Perros
F, Girerd B, Garcia G, Jaïs X, Savale L, Artaud-Macari E, Price LC,
et al: Pulmonary arterial hypertension. Orphanet J Rare Dis.
8:972013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Rubin LJ: The beta-adrenergic receptor in
pulmonary arterial hypertension: A novel therapeutic target. J Am
Coll Cardiol. 65:681–683. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mendes-Ferreira P, Santos-Ribeiro D, Adão
R, Maia-Rocha C, Mendes-Ferreira M, Sousa-Mendes C, Leite-Moreira
AF and Brás-Silva C: Distinct right ventricle remodeling in
response to pressure overload in the rat. Am J Physiol Hear Circ
Physiol. 311:H85–H95. 2016. View Article : Google Scholar
|
9
|
Rain S, Handoko ML, Trip P, Gan CT,
Westerhof N, Stienen GJ, Paulus WJ, Ottenheijm CA, Marcus JT,
Dorfmüller P, et al: Right ventricular diastolic impairment in
patients with pulmonary arterial hypertension. Circulation.
128:2025. 2013. View Article : Google Scholar
|
10
|
Campian ME, Verberne HJ, Hardziyenka M, de
Bruin K, Selwaness M, van den Hoff MJ, Ruijter JM, van Eck-Smit BL,
de Bakker JM and Tan HL: Serial noninvasive assessment of apoptosis
during right ventricular disease progression in rats. J Nucl Med.
50:1371–1377. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Paffett ML, Hesterman J, Candelaria G,
Lucas S, Anderson T, Irwin D, Hoppin J, Norenberg J and Campen MJ:
Longitudinal in vivo SPECT/CT imaging reveals morphological changes
and cardiopulmonary apoptosis in a rodent model of pulmonary
arterial hypertension. PLoS One. 7:e409102012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang Y, Ouyang M, Wang Q and Jian Z:
MicroRNA-142-3p inhibits hypoxia/reoxygenation-induced apoptosis
and fibrosis of cardiomyocytes by targeting high mobility group box
1. Int J Mol Med. 38:1377–1386. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bisognano JD, Weinberger HD, Bohlmeyer TJ,
Pende A, Raynolds MV, Sastravaha A, Roden R, Asano K, Blaxall BC,
Wu SC, et al: Myocardial-directed overexpression of the human
beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol.
32:817–830. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Iwai-Kanai E, Hasegawa K, Araki M, Kakita
T, Morimoto T and Sasayama S: alpha- and beta-adrenergic pathways
differentially regulate cell type-specific apoptosis in rat cardiac
myocytes. Circulation. 100:305–311. 1999. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang X, Szeto C, Gao E, Tang M, Jin J, Fu
Q, Makarewich C, Ai X, Li Y, Tang A, et al: Cardiotoxic and
cardioprotective features of chronic β-adrenergic signaling. Circ
Res. 112:498–509. 2013. View Article : Google Scholar
|
16
|
Lymperopoulos A, Rengo G and Koch WJ:
Adrenergic nervous system in heart failure: Pathophysiology and
therapy. Circ Res. 113:739–753. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Woo AY, Song Y, Xiao RP and Zhu W: Biased
β2-adrenoceptor signalling in heart failure: Pathophysiology and
drug discovery. Br J Pharmacol. 172:5444–5456. 2015. View Article : Google Scholar
|
18
|
Daaka Y, Luttrell LM and Lefkowitz RJ:
Switching of the coupling of the beta2-adrenergic receptor to
different G proteins by protein kinase A. Nature. 390:88–91. 1997.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Rengo G, Lymperopoulos A, Leosco D and
Koch WJ: GRK2 as a novel gene therapy target in heart failure. J
Mol Cell Cardiol. 50:785–792. 2011. View Article : Google Scholar
|
20
|
Salazar NC, Vallejos X, Siryk A, Rengo G,
Cannavo A, Liccardo D, De Lucia C, Gao E, Leosco D, Koch WJ and
Lymperopoulos A: GRK2 blockade with βARKct is essential for cardiac
β2-adrenergic receptor signaling towards increased contractility.
Cell Commun Signal. 11:642013. View Article : Google Scholar
|
21
|
Zhu W, Petrashevskaya N, Ren S, Zhao A,
Chakir K, Gao E, Chuprun JK, Wang Y, Talan M, Dorn GW II, et al:
Gi-biased β2AR signaling links GRK2 upregulation to heart failure.
Circ Res. 110:265–274. 2012. View Article : Google Scholar
|
22
|
Nikolaev VO, Moshkov A, Lyon AR, Miragoli
M, Novak P, Paur H, Lohse MJ, Korchev YE, Harding SE and Gorelik J:
Beta2-adrenergic receptor redistribution in heart failure changes
cAMP compartmentation. Science. 327:1653–1657. 2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lang D, Holzem K, Kang C, Xiao M, Hwang
HJ, Ewald GA, Yamada KA and Efimov IR: Arrhythmogenic remodeling of
β2 versus β1 adrenergic signaling in the human failing heart. Circ
Arrhythmia Electrophysiol. 8:409–419. 2015. View Article : Google Scholar
|
24
|
Wang Y, Yuan J, Qian Z, Zhang X, Chen Y,
Hou X and Zou J: β2 adrenergic receptor activation governs cardiac
repolarization and arrhythmogenesis in a guinea pig model of heart
failure. Sci Rep. 5:76812015. View Article : Google Scholar
|
25
|
Bogaard HJ, Natarajan R, Mizuno S, Abbate
A, Chang PJ, Chau VQ, Hoke NN, Kraskauskas D, Kasper M, Salloum FN
and Voelkel NF: Adrenergic receptor blockade reverses right heart
remodeling and dysfunction in pulmonary hypertensive rats. Am J
Respir Crit Care Med. 182:652–660. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Perros F, Ranchoux B, Izikki M, Bentebbal
S, Happé C, Antigny F, Jourdon P, Dorfmüller P, Lecerf F, Fadel E,
et al: Nebivolol for improving endothelial dysfunction, pulmonary
vascular remodeling, and right heart function in pulmonary
hypertension. J Am Coll Cardiol. 65:668–680. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ishikawa M, Sato N, Asai K, Takano T and
Mizuno K: Effects of a pure alpha/beta-adrenergic receptor blocker
on monocrotaline-induced pulmonary arterial hypertension with right
ventricular hypertrophy in rats. Circ J. 73:2337–2341. 2009.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Okumura K, Kato H, Honjo O, Breitling S,
Kuebler WM, Sun M and Friedberg MK: Carvedilol improves
biventricular fibrosis and function in experimental pulmonary
hypertension. J Mol Med. 93:663–674. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhuang P, Huang Y, Lu Z, Yang Z, Xu L, Sun
F, Zhang Y and Duan J: cAMP-PKA-CaMKII signaling pathway is
involved in aggravated cardiotoxicity during fuzi and beimu
combination treatment of experimental pulmonary hypertension. Sci
Rep. 6:349032016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Deten A, Millar H and Zimmer HG:
Catheterization of pulmonary artery in rats with an ultraminiature
catheter pressure transducer. Am J Physiol Circ Physiol.
285:H2212–H2217. 2003. View Article : Google Scholar
|
31
|
Schmittgen TD, Lee EJ, Jiang J, Sarkar A,
Yang L, Elton TS and Chen C: Real-time PCR quantification of
precursor and mature microRNA. Methods. 44:31–38. 2008. View Article : Google Scholar
|
32
|
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee
DH, Nguyen JT, Barbisin M, Xu L, Mahuvakar VR, Andersen MR, et al:
Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic
Acids Res. 33:e1792005. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhuang P, Zhang Y, Cui G, Bian Y, Zhang M,
Zhang J, Liu Y, Yang X, Isaiah AO, Lin Y and Jiang Y: Direct
stimulation of adult neural stem/progenitor cells in vitro and
neurogenesis in vivo by salvianolic acid B. PLoS One. 7:e356362012.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Hessel MH, Steendijk P, den Adel B,
Schutte CI and van der Laarse A: Characterization of right
ventricular function after monocrotaline-induced pulmonary
hypertension in the intact rat. Am J Physiol Hear Circ Physiol.
291:H2424–H2430. 2006. View Article : Google Scholar
|
35
|
Werchan PM, Summer WR, Gerdes AM and
McDonough KH: Right ventricular performance after
monocrotaline-induced pulmonary hypertension. Am J Physiol Circ
Physiol. 256:H1328–H1336. 1989. View Article : Google Scholar
|
36
|
Kuehne T, Yilmaz S, Steendijk P, Moore P,
Groenink M, Saaed M, Weber O, Higgins CB, Ewert P, Fleck E, et al:
Magnetic resonance imaging analysis of right ventricular
pressure-volume loops in vivo validation and clinical application
in patients with pulmonary hypertension. Circulation.
110:2010–2016. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ameri P, Bertero E, Meliota G, Cheli M,
Canepa M, Brunelli C and Balbi M: Neurohormonal activation and
pharmacological inhibition in pulmonary arterial hypertension and
related right ventricular failure. Hear Fail Rev. 21:539–547. 2016.
View Article : Google Scholar
|
38
|
Usui S, Yao A, Hatano M, Kohmoto O,
Takahashi T, Nagai R and Kinugawa K: Upregulated neurohumoral
factors are associated with left ventricular remodeling and poor
prognosis in rats with monocrotaline-induced pulmonary arterial
hypertension. Circ J. 70:1208–1215. 2006. View Article : Google Scholar : PubMed/NCBI
|
39
|
Giannakoulas G, Mouratoglou SA, Gatzoulis
MA and Karvounis H: Blood biomarkers and their potential role in
pulmonary arterial hypertension associated with congenital heart
disease. A systematic review. Int J Cardiol. 174:618–623. 2014.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Luchner A, Hengstenberg C, Löwel H,
Riegger GA, Schunkert H and Holmer S: Effect of compensated renal
dysfunction on approved heart failure markers direct comparison of
brain natriuretic peptide (BNP) and N-terminal pro-BNP.
Hypertension. 46:118–123. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Grailer JJ, Haggadone MD, Sarma JV,
Zetoune FS and Ward PA: Induction of M2 regulatory macrophages
through the β2-adrenergic receptor with protection during
endotoxemia and acute lung injury. J Innate Immun. 6:607–618. 2014.
View Article : Google Scholar :
|
42
|
Burke DL, Frid MG, Kunrath CL, Karoor V,
Anwar A, Wagner BD, Strassheim D and Stenmark KR: Sustained hypoxia
promotes the development of a pulmonary artery-specific chronic
inflammatory microenvironment. Am J Physiol Lung Cell Mol Physiol.
297:L238–L250. 2009. View Article : Google Scholar : PubMed/NCBI
|
43
|
Baker AJ: Adrenergic signaling in heart
failure: A balance of toxic and protective effects. Pflugers Arch.
466:1139–1150. 2014. View Article : Google Scholar : PubMed/NCBI
|
44
|
Fajardo G, Zhao M, Urashima T, Farahani S,
Hu DQ, Reddy S and Bernstein D: Deletion of the β2-adrenergic
receptor prevents the development of cardiomyopathy in mice. J Mol
Cell Cardiol. 63:155–164. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Rybin VO, Pak E, Alcott S and Steinberg
SF: Developmental changes in beta2-adrenergic receptor signaling in
ventricular myocytes: The role of Gi proteins and caveolae
microdomains. Mol Pharmacol. 63:1338–1348. 2003. View Article : Google Scholar : PubMed/NCBI
|
46
|
So PP, Davies RA, Chandy G, Stewart D,
Beanlands RS, Haddad H, Pugliese C and Mielniczuk LM: Usefulness of
beta-blocker therapy and outcomes in patients with pulmonary
arterial hypertension. Am J Cardiol. 109:1504–1509. 2012.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Thenappan T, Roy SS, Duval S,
Glassner-Kolmin C and Gomberg-Maitland M: β-blocker therapy is not
associated with adverse outcomes in patients with pulmonary
arterial hypertension: A propensity score analysis. Circ Hear Fail.
7:903–910. 2014. View Article : Google Scholar
|
48
|
Bandyopadhyay D, Bajaj NS, Zein J, Minai
OA and Dweik RA: Outcomes of β-blocker use in pulmonary arterial
hypertension: A propensity-matched analysis. Eur Respir J.
46:750–760. 2015. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chatterjee S, Udell JA, Sardar P,
Lichstein E and Ryan JJ: Comparable benefit of β-blocker therapy in
heart failure across regions of the world: Meta-analysis of
randomized clinical trials. Can J Cardiol. 30:898–903. 2014.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Yang Z, Lu ZQ, Zhang YJ, Li YB, Wang ZY,
Zhang YL, Zhuang PW and Bai G: Looking for agonists of β2
adrenergic receptor from Fuzi and Chuanwu by virtual screening and
dual-luciferase reporter assay. J Asian Nat Prod Res. 18:550–561.
2016. View Article : Google Scholar
|