1
|
Dronavalli S, Duka I and Bakris GL: The
pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol
Metab. 4:444–452. 2008. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maisonneuve P, Agodoa L, Gellert R,
Stewart JH, Buccianti G, Lowenfels AB, Wolfe RA, Jones E, Disney
APS, Briggs D, et al: Distribution of primary renal diseases
leading to end-stage renal failure in the United States, Europe,
and Australia/New Zealand: Results from an international
comparative study. Am J Kidney Dis. 35:157–165. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chavers BM, Bilous RW, Ellis EN, Steffes
MW and Mauer SM: Glomerular lesions and urinary albumin excretion
in type I diabetes without overt proteinuria. N Engl J Med.
320:966–970. 1989. View Article : Google Scholar : PubMed/NCBI
|
4
|
McCrary EB: The road to renal failure: An
overview of diabetic nephropathy. Adv Nurse Pract. 16:61–63.
2008.
|
5
|
Schena FP and Gesualdo L: Pathogenetic
mechanisms of diabetic nephropathy. J Am Soc Nephrol. 16(Suppl 1):
S30–S33. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Navarro-González JF, Mora-Fernández C,
Muros de Fuentes M and García-Pérez J: Inflammatory molecules and
pathways in the pathogenesis of diabetic nephropathy. Nat Rev
Nephrol. 7:327–340. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Navarro-González JF and Mora-Fernández C:
The role of inflammatory cytokines in diabetic nephropathy. J Am
Soc Nephrol. 19:433–442. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cho DI, Kim MR, Jeong HY, Jeong HC, Jeong
MH, Yoon SH, Kim YS and Ahn Y: Mesenchymal stem cells reciprocally
regulate the M1/M2 balance in mouse bone marrow-derived
macrophages. Exp Mol Med. 46:e702014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nguyen D, Ping F, Mu W, Hill P, Atkins RC
and Chadban SJ: Macrophage accumulation in human progressive
diabetic nephropathy. Nephrology (Carlton). 11:226–231. 2006.
View Article : Google Scholar
|
10
|
Chow F, Ozols E, Nikolic-Paterson DJ,
Atkins RC and Tesch GH: Macrophages in mouse type 2 diabetic
nephropathy: Correlation with diabetic state and progressive renal
injury. Kidney Int. 65:116–128. 2004. View Article : Google Scholar
|
11
|
Cao Q, Wang Y, Zheng D, Sun Y, Wang Y, Lee
VWS, Zheng G, Tan TK, Ince J, Alexander SI, et al:
IL-10/TGF-β-modified macrophages induce regulatory T cells and
protect against adriamycin nephrosis. J Am Soc Nephrol. 21:933–942.
2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Prockop DJ and Oh JY: Mesenchymal
stem/stromal cells (MSCs): Role as guardians of inflammation. Mol
Ther. 20:14–20. 2012. View Article : Google Scholar :
|
13
|
Chow FY, Nikolic-Paterson DJ, Atkins RC
and Tesch GH: Macrophages in streptozotocin-induced diabetic
nephropathy: potential role in renal fibrosis. Nephrol Dial
Transplant. 19:2987–2996. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang S, Li Y, Zhao J, Zhang J and Huang Y:
Mesenchymal stem cells ameliorate podocyte injury and proteinuria
in a type 1 diabetic nephropathy rat model. Biol Blood Marrow
Transplant. 19:538–546. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Singer NG and Caplan AI: Mesenchymal stem
cells: Mechanisms of inflammation. Annu Rev Pathol. 6:457–478.
2011. View Article : Google Scholar
|
16
|
Volarevic V, Arsenijevic N, Lukic ML and
Stojkovic M: Concise review: Mesenchymal stem cell treatment of the
complications of diabetes mellitus. Stem Cells. 29:5–10. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee RH, Seo MJ, Reger RL, Spees JL, Pulin
AA, Olson SD and Prockop DJ: Multipotent stromal cells from human
marrow home to and promote repair of pancreatic islets and renal
glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci USA.
103:17438–17443. 2006. View Article : Google Scholar :
|
18
|
Tögel F, Hu Z, Weiss K, Isaac J, Lange C
and Westenfelder C: Administered mesenchymal stem cells protect
against ischemic acute renal failure through
differentiation-independent mechanisms. Am J Physiol Renal Physiol.
289:F31–F42. 2005. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tögel F, Weiss K, Yang Y, Hu Z, Zhang P
and Westenfelder C: Vasculotropic, paracrine actions of infused
mesenchymal stem cells are important to the recovery from acute
kidney injury. Am J Physiol Renal Physiol. 292:F1626–F1635. 2007.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ezquer FE, Ezquer ME, Parrau DB, Carpio D,
Yañez AJ and Conget PA: Systemic administration of multipotent
mesenchymal stromal cells reverts hyperglycemia and prevents
nephropathy in type 1 diabetic mice. Biol Blood Marrow Transplant.
14:631–640. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Semedo P, Palasio CG, Oliveira CD, Feitoza
CQ, Gonçalves GM, Cenedeze MA, Wang PMH, Teixeira VPA, Reis MA,
Pacheco-Silva A, et al: Early modulation of inflammation by
mesenchymal stem cell after acute kidney injury. Int
Immunopharmacol. 9:677–682. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Semedo P, Correa-Costa M, Antonio Cenedeze
M, Maria Avancini Costa Malheiros D, Antonia dos Reis M, Shimizu
MH, Seguro AC, Pacheco-Silva A, Saraiva Camara NO and Olsen N:
Mesenchymal stem cells attenuate renal fibrosis through immune
modulation and remodeling properties in a rat remnant kidney model.
Stem Cells. 27:3063–3073. 2009.PubMed/NCBI
|
23
|
Park JH, Hwang I, Hwang SH, Han H and Ha
H: Human umbilical cord blood-derived mesenchymal stem cells
prevent diabetic renal injury through paracrine action. Diabetes
Res Clin Pract. 98:465–473. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Nakajima H, Uchida K, Guerrero AR,
Watanabe S, Sugita D, Takeura N, Yoshida A, Long G, Wright KT,
Johnson WEB, et al: Transplantation of mesenchymal stem cells
promotes an alternative pathway of macrophage activation and
functional recovery after spinal cord injury. J Neurotrauma.
29:1614–1625. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jiang TS, Cai L, Ji WY, Hui YN, Wang YS,
Hu D and Zhu J: Reconstruction of the corneal epithelium with
induced marrow mesenchymal stem cells in rats. Mol Vis.
16:1304–1316. 2010.PubMed/NCBI
|
26
|
Mafi P: Adult mesenchymal stem cells and
cell surface characterization - a systematic review of the
literature. Open Orthop J. 5(Suppl 2): 253–260. 2011. View Article : Google Scholar
|
27
|
Zhang X, Goncalves R and Mosser DM: The
isolation and characterization of murine macrophages. Curr Protoc
Immunol. Chapter: Unit-14.1. 2008. View Article : Google Scholar
|
28
|
Wang Y, Wang Y, Feng X, Bao S, Yi S,
Kairaitis L, Tay YC, Rangan GK and Harris DC: Depletion of CD4(+) T
cells aggravates glomerular and interstitial injury in murine
adriamycin nephropathy. Kidney Int. 59:975–984. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kim J and Hematti P: Mesenchymal stem
cell-educated macrophages: A novel type of alternatively activated
macrophages. Exp Hematol. 37:1445–1453. 2009. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tesch GH and Allen TJ: Rodent models of
streptozotocin-induced diabetic nephropathy. Nephrology (Carlton).
12:261–266. 2007. View Article : Google Scholar
|
31
|
Liu CX, Hu Q, Wang Y, Zhang W, Ma ZY, Feng
JB, Wang R, Wang XP, Dong B, Gao F, et al: Angiotensin-converting
enzyme (ACE) 2 overexpression ameliorates glomerular injury in a
rat model of diabetic nephropathy: A comparison with ACE
inhibition. Mol Med. 17:59–69. 2011.
|
32
|
Lv SS, Liu G, Wang JP, Wang WW, Cheng J,
Sun AL, Liu HY, Nie HB, Su MR and Guan GJ: Mesenchymal stem cells
transplantation ameliorates glomerular injury in
streptozotocin-induced diabetic nephropathy in rats via inhibiting
macrophage infiltration. Int Immunopharmacol. 17:275–282. 2013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lv S, Cheng J, Sun A, Li J, Wang W, Guan
G, Liu G and Su M: Mesenchymal stem cells transplantation
ameliorates glomerular injury in streptozotocin-induced diabetic
nephropathy in rats via inhibiting oxidative stress. Diabetes Res
Clin Pract. 104:143–154. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tesch GH: MCP-1/CCL2: A new diagnostic
marker and therapeutic target for progressive renal injury in
diabetic nephropathy. Am J Physiol Renal Physiol. 294:F697–F701.
2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Brady HR: Leukocyte adhesion molecules and
kidney diseases. Kidney Int. 45:1285–1300. 1994. View Article : Google Scholar : PubMed/NCBI
|
36
|
Duffield JS, Erwig L-P, Wei X, Liew FY,
Rees AJ and Savill JS: Activated macrophages direct apoptosis and
suppress mitosis of mesangial cells. J Immunol. 164:2110–2119.
2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Chow FY, Nikolic-Paterson DJ, Ozols E,
Atkins RC and Tesch GH: Intercellular adhesion molecule-1
deficiency is protective against nephropathy in type 2 diabetic
db/db mice. J Am Soc Nephrol. 16:1711–1722. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Banba N, Nakamura T, Matsumura M, Kuroda
H, Hattori Y and Kasai K: Possible relationship of monocyte
chemoattractant protein-1 with diabetic nephropathy. Kidney Int.
58:684–690. 2000. View Article : Google Scholar : PubMed/NCBI
|
39
|
Santos JC, de Brito CA, Futata EA, Azor
MH, Orii NM, Maruta CW, Rivitti EA, Duarte AJS and Sato MN:
Upregulation of chemokine C-C ligand 2 (CCL2) and C-X-C chemokine 8
(CXCL8) expression by monocytes in chronic idiopathic urticaria.
Clin Exp Immunol. 167:129–136. 2012. View Article : Google Scholar :
|
40
|
Li W, Zhang Q, Wang M, Wu H, Mao F, Zhang
B, Ji R, Gao S, Sun Z, Zhu W, et al: Macrophages are involved in
the protective role of human umbilical cord-derived stromal cells
in renal ischemia-reperfusion injury. Stem Cell Res (Amst).
10:405–416. 2013. View Article : Google Scholar
|
41
|
Villanueva S, Ewertz E, Carrión F, Tapia
A, Vergara C, Céspedes C, Sáez PJ, Luz P, Irarrázabal C, Carreño
JE, et al: Mesenchymal stem cell injection ameliorates chronic
renal failure in a rat model. Clin Sci (Lond). 121:489–499. 2011.
View Article : Google Scholar
|
42
|
Ezquer F, Giraud-Billoud M, Carpio D,
Cabezas F, Conget P and Ezquer M: Proregenerative microenvironment
triggered by donor mesenchymal stem cells preserves renal function
and structure in mice with severe diabetes mellitus. Biomed Res
Int. 2015:1647032015. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bi B, Schmitt R, Israilova M, Nishio H and
Cantley LG: Stromal cells protect against acute tubular injury via
an endocrine effect. J Am Soc Nephrol. 18:2486–2496. 2007.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang A, Wang Y, Ye Z, Xie H, Zhou L and
Zheng S: Mechanism of TNF-α-induced migration and hepatocyte growth
factor production in human mesenchymal stem cells. J Cell Biochem.
111:469–475. 2010. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kim YH, Ryu JM, Lee YJ and Han HJ:
Fibronectin synthesis by high glucose level mediated proliferation
of mouse embryonic stem cells: Involvement of ANG II and TGF-β1. J
Cell Physiol. 223:397–407. 2010.PubMed/NCBI
|
46
|
Wise AF and Ricardo SD: Mesenchymal stem
cells in kidney inflammation and repair. Nephrology (Carlton).
17:1–10. 2012. View Article : Google Scholar
|
47
|
Rasmusson I: Immune modulation by
mesenchymal stem cells. Exp Cell Res. 312:2169–2179. 2006.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Meisel R, Zibert A, Laryea M, Göbel U,
Däubener W and Dilloo D: Human bone marrow stromal cells inhibit
allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated
tryptophan degradation. Blood. 103:4619–4621. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Tipnis S, Viswanathan C and Majumdar AS:
Immunosuppressive properties of human umbilical cord-derived
mesenchymal stem cells: Role of B7-H1 and IDO. Immunol Cell Biol.
88:795–806. 2010. View Article : Google Scholar : PubMed/NCBI
|