Sphingosine kinase inhibitors: A patent review
- Authors:
- Mengda Cao
- Chunmei Ji
- Yanjun Zhou
- Wen Huang
- Weiwei Ni
- Xunliang Tong
- Ji-Fu Wei
-
Affiliations: Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China, Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China - Published online on: February 20, 2018 https://doi.org/10.3892/ijmm.2018.3505
- Pages: 2450-2460
This article is mentioned in:
Abstract
Orr Gandy KA and Obeid LM: Targeting the sphingosine kinase/sphingosine 1-phosphate pathway in disease: Review of sphingosine kinase inhibitors. Biochim Biophys Acta. 1831:157–166. 2013. View Article : Google Scholar | |
Kitatani K, Idkowiak-Baldys J and Hannun YA: The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal. 20:1010–1018. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hannun YA and Obeid LM: Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat Rev Mol Cell Biol. 9:139–150. 2008. View Article : Google Scholar : PubMed/NCBI | |
Herr DR, Grillet N, Schwander M, Rivera R, Müller U and Chun J: Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. J Neurosci. 27:1474–1478. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pitman MR, Powell JA, Coolen C, Moretti PA, Zebol JR, Pham DH, Finnie JW, Don AS, Ebert LM, Bonder CS, et al: A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties. Oncotarget. 6:7065–7083. 2015. View Article : Google Scholar : PubMed/NCBI | |
Archbold JK, Martin JL and Sweet MJ: Towards selective lysophospholipid GPCR modulators. Trends Pharmacol Sci. 35:219–226. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ishii I, Fukushima N, Ye X and Chun J: Lysophospholipid receptors: Signaling and biology. Annu Rev Biochem. 73:321–354. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Peyruchaud O, French KJ, Magnusson MK and Mosher DF: Sphingosine 1-phosphate stimulates fibronectin matrix assembly through a Rho-dependent signal pathway. Blood. 93:2984–2990. 1999.PubMed/NCBI | |
Melendez AJ: Sphingosine kinase signalling in immune cells: Potential as novel therapeutic targets. Biochim Biophys Acta. 1784:66–75. 2008. View Article : Google Scholar | |
Porcelli AM, Ghelli A, Hrelia S and Rugolo M: Phospholipase D stimulation is required for sphingosine-1-phosphate activation of actin stress fibre assembly in human airway epithelial cells. Cell Signal. 14:75–81. 2002. View Article : Google Scholar | |
Meng Y, Xu Z, Wu F, Chen W, Xie S, Liu J, Huang X and Zhou Y: Sphingosine-1-phosphate suppresses cyclophosphamide induced follicle apoptosis in human fetal ovarian xenografts in nude mice. Fertil Steril. 102:871–877.e873. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Cai KY, Li W and Huang H: Sphingosine-1-phosphate induces the migration and angiogenesis of Epcs through the Akt signaling pathway via Sphingosine-1-phosphate receptor 3/platelet-derived growth factor receptor-β. Cell Mol Biol Lett. 20:597–611. 2015. View Article : Google Scholar : PubMed/NCBI | |
Florey O and Haskard DO: Sphingosine 1-phosphate enhances Fc gamma receptor-mediated neutrophil activation and recruitment under flow conditions. J Immunol. 183:2330–2336. 2009. View Article : Google Scholar : PubMed/NCBI | |
Stieber F and Wienke D: Inhibitors of sphingosine kinase. Patent SG181643 A1. 2010 | |
Hla T, Sanchez T, Paik J and Claffey KP: Methods of inhibiting vascular permeability and apoptosis. Patent WO/2005/002559 A2. Filed June 18, 2004; issued January 13. 2005 | |
Lynch K and Santos W: Sphingosine kinase inhibitors. Patent WO2016054261 A1. Filed 30 September, 2015; issued 7 April. 2016 | |
Smith C and French K: Methods for the treatment and prevention of inflammatory diseases. Patent US20060270630 A1. Filed 19 May 2006; issued 30 November. 2006 | |
Hahm B, Seo YJ and Alexander S: Modulation of sphingosine 1-phosphate metabolizing enzymes for the treatment of negative-strand rna virus infections. Patent WO2012166859 A2. Filed 31 May, 2012; issued 6 December. 2012 | |
Sinha UK and Masood R: Compositions and methods of sphingosine kinase inhibitors for use thereof in cancer therapy. Patent WO2008067560 A9. Filed November 30, 2007; issued July 17. 2008 | |
Olivera A, Kohama T, Tu Z, Milstien S and Spiegel S: Purification and characterization of rat kidney sphingosine kinase. J Biol Chem. 273:12576–12583. 1998. View Article : Google Scholar : PubMed/NCBI | |
Lai WQ, Wong WS and Leung BP: Sphingosine kinase and sphingosine 1-phosphate in asthma. Biosci Rep. 31:145–150. 2011. View Article : Google Scholar | |
Li J, Song Z, Wang Y, Yin Y, Liu Y, Yuan R and Nan X: Overexpression of SphK1 enhances cell proliferation and invasion in triple-negative breast cancer via the PI3K/AKT signaling pathway. Tumour Biol. 37:10587–10593. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xia P, Gamble JR, Wang L, Pitson SM, Moretti PA, Wattenberg BW, D'Andrea RJ and Vadas MA: An oncogenic role of sphingosine kinase. Curr Biol. 10:1527–1530. 2000. View Article : Google Scholar : PubMed/NCBI | |
Meng XD, Zhou ZS, Qiu JH, Shen WH, Wu Q and Xiao J: Increased SPHK1 expression is associated with poor prognosis in bladder cancer. Tumour Biol. 35:2075–2080. 2014. View Article : Google Scholar | |
Matula K, Collie-Duguid E, Murray G, Parikh K, Grabsch H, Tan P, Lalwani S, Garau R, Ong Y, Bain G, et al: Regulation of cellular sphingosine-1-phosphate by sphingosine kinase 1 and sphingosine-1-phopshate lyase determines chemotherapy resistance in gastroesophageal cancer. BMC Cancer. 15:7622015. View Article : Google Scholar : PubMed/NCBI | |
Selvam SP and Ogretmen B: Sphingosine kinase/sphingosine 1-phosphate signaling in cancer therapeutics and drug resistance. Handb Exp Pharmacol. 216:3–27. 2013. View Article : Google Scholar | |
Zhang Y, Wang Y, Wan Z, Liu S, Cao Y and Zeng Z: Sphingosine kinase 1 and cancer: A systematic review and meta-analysis. PLoS One. 9:e903622014. View Article : Google Scholar : PubMed/NCBI | |
Iwabuchi K, Nakayama H, Oizumi A, Suga Y, Ogawa H and Takamori K: Role of ceramide from glycosphingolipids and its metabolites in immunological and inflammatory responses in humans. Mediators Inflamm. 2015:1207482015. View Article : Google Scholar : PubMed/NCBI | |
Alemany R, van Koppen CJ, Danneberg K, Ter Braak M and Meyer Zu Heringdorf D: Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch Pharmacol. 374:413–428. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Li J, Li G, Li Y, Xu C, Li M, Xu G and Fu S: Prognostic significance of sphingosine kinase 2 expression in non-small cell lung cancer. Tumour Biol. 35:363–368. 2014. View Article : Google Scholar | |
Zhang L, Liu X, Zuo Z, Hao C and Ma Y: Sphingosine kinase 2 promotes colorectal cancer cell proliferation and invasion by enhancing MYC expression. Tumour Biol. 37:8455–8460. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xun C, Chen MB, Qi L, Tie-Ning Z, Peng X, Ning L, Zhi-Xiao C and Li-Wei W: Targeting sphingosine kinase 2 (SphK2) by ABC294640 inhibits colorectal cancer cell growth in vitro and in vivo. J Exp Clin Cancer Res. 34:942015. View Article : Google Scholar : PubMed/NCBI | |
Liu Q, Rehman H, Shi Y, Krishnasamy Y, Lemasters JJ, Smith CD and Zhong Z: Inhibition of sphingosine kinase-2 suppresses inflammation and attenuates graft injury after liver transplantation in rats. PLoS One. 7:e418342012. View Article : Google Scholar : PubMed/NCBI | |
Strub GM, Paillard M, Liang J, Gomez L, Allegood JC, Hait NC, Maceyka M, Price MM, Chen Q, Simpson DC, et al: Sphingosine-1-phosphate produced by sphingosine kinase 2 in mitochondria interacts with prohibitin 2 to regulate complex IV assembly and respiration. FASEB J. 25:600–612. 2011. View Article : Google Scholar : | |
Shida D, Takabe K, Kapitonov D, Milstien S and Spiegel S: Targeting SphK1 as a new strategy against cancer. Curr Drug Targets. 9:662–673. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liau G, Stefansson S and Su J: Induction of blood vessel formation through administration of polynucleotides encoding sphingosine kinases. Patent WO2002028406 A2. Filed October 5, 2001; issued October 5. 2002 | |
Pitson SM, Wattenberg BW, Xia P, Dandrea RJ, Gamble JR and Vadas MA: Sphingosine kinase enzyme. Patent WO2000070028 A1. Filed May 12, 2000; issued November 23. 2000 | |
French KJ, Schrecengost RS, Lee BD, Zhuang Y, Smith SN, Eberly JL, Yun JK and Smith CD: Discovery and evaluation of inhibitors of human sphingosine kinase. Cancer Res. 63:5962–5969. 2003.PubMed/NCBI | |
Chun J and Hartung HP: Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 33:91–101. 2010. View Article : Google Scholar : PubMed/NCBI | |
Spiegel S and Milstien S: Sphingosine-1-phosphate: An enigmatic signalling lipid. Nat Rev Mol Cell Biol. 4:397–407. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lai WQ, Melendez AJ and Leung BP: Role of sphingosine kinase and sphingosine-1-phosphate in inflammatory arthritis. World J Biol Chem. 1:321–326. 2010. View Article : Google Scholar | |
Stoffel W, Sticht G and LeKim D: Synthesis and degradation of spingosine bases in Hansenula ciferrii. Hoppe Seylers Z Physiol Chem. 349:1149–1156. 1968. View Article : Google Scholar : PubMed/NCBI | |
Hannun YA and Bell RM: Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 243:500–507. 1989. View Article : Google Scholar : PubMed/NCBI | |
Okazaki T, Bell RM and Hannun YA: Sphingomyelin turnover induced by vitamin D3 in HL-60 cells. Role in cell differentiation. J Biol Chem. 264:19076–19080. 1989.PubMed/NCBI | |
Pitman MR and Pitson SM: Inhibitors of the sphingosine kinase pathway as potential therapeutics. Curr Cancer Drug Targets. 10:354–367. 2010. View Article : Google Scholar : PubMed/NCBI | |
Paugh SW, Paugh BS, Rahmani M, Kapitonov D, Almenara JA, Kordula T, Milstien S, Adams JK, Zipkin RE, Grant S, et al: A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia. Blood. 112:1382–1391. 2008. View Article : Google Scholar : PubMed/NCBI | |
Szulc Zdzislaw M, Bielawska Alicja, Obeid Lina M, Hannun Yusuf A, Norris James and Xiang Liu: Sphingo-guanidines and their use as inhibitors of sphingosine kinase. Patent WO2010078247 A1. Filed 28 December, 2009; issued 8 July. 2010 | |
Szulc ZM, Bielawska A, Obeid LM, Hannun YA, Norris J and Xiang L: Sphingo-guanidines and their use as ihibitors of sphingosine kinase. Patent US2012035268 A1. Filed 28 December, 2009; issued 9 February. 2012 | |
Patwardhan NN, Morris EA, Kharel Y, Raje MR, Gao M, Tomsig JL, Lynch KR and Santos WL: Structure-activity relationship studies and in vivo activity of guanidine-based sphingosine kinase inhibitors: Discovery of SphK1- and SphK2-selective inhibitors. J Med Chem. 58:1879–1899. 2015. View Article : Google Scholar : PubMed/NCBI | |
Houck JD, Dawson TK, Kennedy AJ, Kharel Y, Naimon ND, Field SD, Lynch KR and Macdonald TL: Structural requirements and docking analysis of amidine-based sphingosine kinase 1 inhibitors containing oxadiazoles. ACS Med Chem Lett. 7:487–492. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lynch KR, MacDonald TL and Mathews TP: Imidamide sphingosine kinase inhibitors. Patent WO2011/020116 A1. Filed 16 August, 2010; issued 17 February. 2011 | |
University Of Virginia Patent Foundation; Santos WL, Lynch KR, Macdonald TL, Kennedy A, Kharel Y, Raje MR and Houck J: Long chain base sphingosine kinase inhibitors. Patent WO2013/119946A1. Filed 8 February, 2013; issued 15 August. 2013 | |
Plano D, Amin S and Sharma AK: Importance of sphingosine kinase (SphK) as a target in developing cancer therapeutics and recent developments in the synthesis of novel SphK inhibitors. J Med Chem. 57:5509–5524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thomas J, Liu XG, Kumaravel G, Guckian KM, Caldwell RD, Ma B, Lin EY, Zheng GZ and Taveras AG: Bicyclic aryl sphingosine 1-phosphate analogs. Patent NZ597596 A. 2014 | |
Thomas J, Liu XG, Kumaravel G, Guckian KM, Caldwell RD, Ma B, Lin EY, Zheng GZ and Taveras AG: Bicyclic aryl sphingosine 1-phosphate analogs. Patent US2016129023 A1. Filed 5 October, 2015; issued 12 May. 2016 | |
Congdon MD, Childress ES, Patwardhan NN, Gumkowski J, Morris EA, Kharel Y, Lynch KR and Santos WL: Structure-activity relationship studies of the lipophilic tail region of sphingosine kinase 2 inhibitors. Bioorg Med Chem Lett. 25:4956–4960. 2015. View Article : Google Scholar : PubMed/NCBI | |
Congdon MD, Kharel Y, Brown AM, Lewis SN, Bevan DR, Lynch KR and Santos WL: Structure-activity relationship studies and molecular modeling of naphthalene-based sphingosine kinase 2 inhibitors. ACS Med Chem Lett. 7:229–234. 2016. View Article : Google Scholar : PubMed/NCBI | |
Knott K, Kharel Y, Raje MR, Lynch KR and Santos WL: Effect of alkyl chain length on sphingosine kinase 2 selectivity. Bioorg Med Chem Lett. 22:6817–6820. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brinkmann V, Davis MD, Heise CE, Albert R, Cottens S, Hof R, Bruns C, Prieschl E, Baumruker T, Hiestand P, et al: The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem. 277:21453–21457. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pitman MR and Pitson SM: Benzene sulfonamide-based inhibitors of sphingosine kinases. Patent WO2016007993 A1. Filed 16 July, 2015; issued 21 January. 2016 | |
French KJ, Upson JJ, Keller SN, Zhuang Y, Yun JK and Smith CD: Antitumor activity of sphingosine kinase inhibitors. J Pharmacol Exp Ther. 318:596–603. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Peterson YK, Smith RA and Smith CD: Characterization of isoenzyme-selective inhibitors of human sphingosine kinases. PLoS One. 7:e445432012. View Article : Google Scholar : PubMed/NCBI | |
Antoon JW, Meacham WD, Bratton MR, Slaughter EM, Rhodes LV, Ashe HB, Wiese TE, Burow ME and Beckman BS: Pharmacological inhibition of sphingosine kinase isoforms alters estrogen receptor signaling in human breast cancer. J Mol Endocrinol. 46:205–216. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ren S, Xin C, Pfeilschifter J and Huwiler A: A novel mode of action of the putative sphingosine kinase inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (SKI II): induction of lysosomal sphingosine kinase 1 degradation. Cell Physiol Biochem. 26:97–104. 2010. View Article : Google Scholar : PubMed/NCBI | |
French KJ, Zhuang Y, Maines LW, Gao P, Wang W, Beljanski V, Upson JJ, Green CL, Keller SN and Smith CD: Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther. 333:129–139. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Chaiteerakij R, Moser CD, Shaleh H, Boakye J, Chen G, Ndzengue A, Li Y, Zhou Y, Huang S, et al: Antitumor effect of the novel sphingosine kinase 2 inhibitor ABC294640 is enhanced by inhibition of autophagy and by sorafenib in human cholangiocarcinoma cells. Oncotarget. 7:20080–20092. 2016. View Article : Google Scholar : PubMed/NCBI | |
Antoon JW, White MD, Meacham WD, Slaughter EM, Muir SE, Elliott S, Rhodes LV, Ashe HB, Wiese TE, Smith CD, et al: Antiestrogenic effects of the novel sphingosine kinase-2 inhibitor ABC294640. Endocrinology. 151:5124–5135. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kono K, Tanaka M, Mizuno T, Kodama K, Ogita T and Kohama T: B-535a, b and c, new sphingosine kinase inhibitors, produced by a marine bacterium; taxonomy, fermentation, isolation, physico-chemical properties and structure determination. J Antibiot (Tokyo). 53:753–758. 2000. View Article : Google Scholar | |
Kono K, Tanaka M, Ogita T and Kohama T: Characterization of B-5354c, a new sphingosine kinase inhibitor, produced by a marine bacterium. J Antibiot (Tokyo). 53:759–764. 2000. View Article : Google Scholar | |
Salma Y, Lafont E, Therville N, Carpentier S, Bonnafé MJ, Levade T, Génisson Y and Andrieu-Abadie N: The natural marine anhydrophytosphingosine, Jaspine B, induces apoptosis in melanoma cells by interfering with ceramide metabolism. Biochem Pharmacol. 78:477–485. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sarkar S, Maceyka M, Hait NC, Paugh SW, Sankala H, Milstien S and Spiegel S: Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett. 579:5313–5317. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gamble J, Vadas M, Pitson S, Xia P and Limaye V: Method of modulating epithelial cell activity by modulating the functional levels of sphingosine kinase. Patent US20060205688A1. Filed 14 October, 2003; issued 14 September. 2006 | |
Dai L, Qi Y, Chen J, Kaczorowski D, Di W, Wang W and Xia P: Sphingosine kinase (SphK) 1 and SphK2 play equivalent roles in mediating insulin's mitogenic action. Mol Endocrinol. 28:197–207. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schnute ME, McReynolds MD, Kasten T, Yates M, Jerome G, Rains JW, Hall T, Chrencik J, Kraus M, Cronin CN, et al: Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1. Biochem J. 444:79–88. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park ES, Choi S, Shin B, Yu J, Yu J, Hwang JM, Yun H, Chung YH, Choi JS, Choi Y, et al: Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction. J Biol Chem. 290:9660–9673. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T, et al: Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature. 465:1084–1088. 2010. View Article : Google Scholar : PubMed/NCBI | |
Garris CS, Wu L, Acharya S, Arac A, Blaho VA, Huang Y, Moon BS, Axtell RC, Ho PP, Steinberg GK, et al: Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat Immunol. 14:1166–1172. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nguyen AV, Wu YY and Lin EY: STAT3 and sphingosine-1-phosphate in inflammation-associated colorectal cancer. World J Gastroenterol. 20:10279–10287. 2014. View Article : Google Scholar : PubMed/NCBI | |
Theiss AL: Sphingosine-1-phosphate: Driver of NFκB and STAT3 persistent activation in chronic intestinal inflammation and colitis-associated cancer. JAKSTAT. 2:e241502013. | |
Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang WC, Hait NC, Allegood JC, Price MM, Avni D, et al: Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell. 23:107–120. 2013. View Article : Google Scholar : PubMed/NCBI | |
Degagné E, Pandurangan A, Bandhuvula P, Kumar A, Eltanawy A, Zhang M, Yoshinaga Y, Nefedov M, de Jong PJ, Fong LG, et al: Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs. J Clin Invest. 124:5368–5384. 2014. View Article : Google Scholar : PubMed/NCBI | |
McNaughton M, Pitman M, Pitson SM, Pyne NJ and Pyne S: Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget. 7:16663–16675. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li PH, Wu JX, Zheng JN and Pei DS: A sphingosine kinase-1 inhibitor, SKI-II, induces growth inhibition and apoptosis in human gastric cancer cells. Asian Pac J Cancer Prev. 15:10381–10385. 2014. View Article : Google Scholar | |
Liu Y and Zhu Z, Cai H, Liu Q, Zhou H and Zhu Z: SKI-II reverses the chemoresistance of SGC7901/DDP gastric cancer cells. Oncol Lett. 8:367–373. 2014. View Article : Google Scholar : PubMed/NCBI | |
Roviezzo F, Sorrentino R, Bertolino A, De Gruttola L, Terlizzi M, Pinto A, Napolitano M, Castello G, D'Agostino B, Ianaro A, et al: S1P-induced airway smooth muscle hyperresponsiveness and lung inflammation in vivo: Molecular and cellular mechanisms. Br J Pharmacol. 172:1882–1893. 2015. View Article : Google Scholar : | |
Lin CC, Lee IT, Hsu CH, Hsu CK, Chi PL, Hsiao LD and Yang CM: Sphingosine-1-phosphate mediates ICAM-1-dependent monocyte adhesion through p38 MAPK and p42/p44 MAPK-dependent Akt activation. PLoS One. 10:e01184732015. View Article : Google Scholar : PubMed/NCBI | |
Völzke A, Koch A, Meyer Zu Heringdorf D, Huwiler A and Pfeilschifter J: Sphingosine 1-phosphate (S1P) induces COX-2 expression and PGE2 formation via S1P receptor 2 in renal mesangial cells. Biochim Biophys Acta. 1841:11–21. 2014. View Article : Google Scholar | |
Selb R, Eckl-Dorna J, Twaroch TE, Lupinek C, Teufelberger A, Hofer G, Focke-Tejkl M, Gepp B, Linhart B, Breiteneder H, et al: Critical and direct involvement of the CD23 stalk region in IgE binding. J Allergy Clin Immunol. 139:281–289.e5. 2017. View Article : Google Scholar : | |
Galli SJ and Tsai M: IgE and mast cells in allergic disease. Nat Med. 18:693–704. 2012. View Article : Google Scholar : PubMed/NCBI | |
Melendez AJ: Allergy therapy: The therapeutic potential of targeting sphingosine kinase signalling in mast cells. Eur J Immunol. 38:2969–2974. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kunisawa J, Kurashima Y, Gohda M, Higuchi M, Ishikawa I, Miura F, Ogahara I and Kiyono H: Sphingosine 1-phosphate regulates peritoneal B-cell trafficking for subsequent intestinal IgA production. Blood. 109:3749–3756. 2007. View Article : Google Scholar : PubMed/NCBI | |
Garris CS, Blaho VA, Hla T and Han MH: Sphingosine-1-phosphate receptor 1 signalling in T cells: Trafficking and beyond. Immunology. 142:347–353. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL and Cyster JG: Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 427:355–360. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rivera J, Proia RL and Olivera A: The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol. 8:753–763. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lai WQ, Goh HH, Bao Z, Wong WS, Melendez AJ and Leung BP: The role of sphingosine kinase in a murine model of allergic asthma. J Immunol. 180:4323–4329. 2008. View Article : Google Scholar : PubMed/NCBI | |
Price MM, Oskeritzian CA, Falanga YT, Harikumar KB, Allegood JC, Alvarez SE, Conrad D, Ryan JJ, Milstien S and Spiegel S: A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent murine model of allergic asthma. J Allergy Clin Immunol. 131:501–11.e1. 2013. View Article : Google Scholar | |
Levkau B: Cardiovascular effects of sphingosine-1-phosphate (S1P). Handb Exp Pharmacol. 216:147–170. 2013. View Article : Google Scholar | |
Argraves KM and Argraves WS: HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res. 48:2325–2333. 2007. View Article : Google Scholar : PubMed/NCBI | |
Levkau B: HDL-S1P: Cardiovascular functions, disease-associated alterations, and therapeutic applications. Front Pharmacol. 6:2432015. View Article : Google Scholar : PubMed/NCBI | |
Jing XD, Wei XM, Deng SB, Du JL, Liu YJ and She Q: The relationship between the high-density lipoprotein (HDL)-associated sphingosine-1-phosphate (S1P) and coronary in-stent restenosis. Clin Chim Acta. 446:248–252. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pchejetski D, Foussal C, Alfarano C, Lairez O, Calise D, Guilbeau-Frugier C, Schaak S, Seguelas MH, Wanecq E, Valet P, et al: Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J. 33:2360–2369. 2012. View Article : Google Scholar | |
Frias MA, James RW, Gerber-Wicht C and Lang U: Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: Role of sphingosine-1-phosphate. Cardiovasc Res. 82:313–323. 2009. View Article : Google Scholar : PubMed/NCBI | |
Whetzel AM, Bolick DT, Srinivasan S, Macdonald TL, Morris MA, Ley K and Hedrick CC: Sphingosine-1 phosphate prevents monocyte/endothelial interactions in type 1 diabetic NOD mice through activation of the S1P1 receptor. Circ Res. 99:731–739. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Xia Y, Yan W, Zhang H, Zhou F, Zhao S, Wang W, Zhu D, Xin C, Lee Y, et al: Sphingosine 1-phosphate signaling contributes to cardiac inflammation, dysfunction, and remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol. 310:H250–H261. 2016. View Article : Google Scholar | |
Li N and Zhang F: Implication of sphingosin-1-phosphate in cardiovascular regulation. Front Biosci (Landmark Ed). 21:1296–1313. 2016. View Article : Google Scholar | |
Keul P, van Borren MM, Ghanem A, Müller FU, Baartscheer A, Verkerk AO, Stümpel F, Schulte JS, Hamdani N, Linke WA, et al: Sphingosine-1-phosphate receptor 1 regulates cardiac function by modulating Ca2+ sensitivity and Na+/H+ exchange and mediates protection by ischemic preconditioning. J Am Heart Assoc. 5:52016. View Article : Google Scholar | |
Song J, Hagiya H, Kurata H, Mizuno H and Ito T: Prevention of GVHD and graft rejection by a new S1P receptor agonist, W-061, in rat small bowel transplantation. Transpl Immunol. 26:163–170. 2012. View Article : Google Scholar : PubMed/NCBI | |
Trayssac M, Galvani S, Augé N, Sabbadini R, Calise D, Mucher E, Sallusto F, Thomsen M, Salvayre R and Nègre-Salvayre A: Role of sphingosine-1-phosphate in transplant vasculopathy evoked by anti-HLA antibody. Am J Transplant. 15:2050–2061. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sanna MG, Liao J, Jo E, Alfonso C, Ahn MY, Peterson MS, Webb B, Lefebvre S, Chun J, Gray N, et al: Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem. 279:13839–13848. 2004. View Article : Google Scholar : PubMed/NCBI | |
Brinkmann V, Cyster JG and Hla T: FTY720: Sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant. 4:1019–1025. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Wang C, Zhang Q, Tang C, Li N and Li J: The reduction of allograft arteriosclerosis in intestinal transplant is associated with sphingosine kinase 1/sphingosine-1-phosphate signaling after fish oil treatment. Transplantation. 93:989–996. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chiba K1, Yanagawa Y, Masubuchi Y, Kataoka H, Kawaguchi T, Ohtsuki M and Hoshino Y: FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J Immunol. 160:5037–5044. 1998.PubMed/NCBI | |
Zhang J, Zhang A, Sun Y, Cao X and Zhang N: Treatment with immunosuppressants FTY720 and tacrolimus promotes functional recovery after spinal cord injury in rats. Tohoku J Exp Med. 219:295–302. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yuzawa K, Fukunaga K and Ohkohchi N: Back transplantation for survival of the graft. Transplant Proc. 37:192–193. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sugito K, Uekusa S, Kawashima H, Masuko T, Furuya T, Konuma N, Ohashi K, Inoue M, Ikeda T and Koshinaga T: Effect of combined treatment with FK506, FTY720, and ex vivo graft irradiation in rat small bowel transplantation: Expression of mucosal addressin cell adhesion molecule-1. Pediatr Transplant. 14:614–617. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lopes CT, Gallo AP, Palma PV, Cury PM and Bueno V: Skin allograft survival and analysis of renal parameters after FTY720 + tacrolimus treatment in mice. Transplant Proc. 40:856–860. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pyne S, Adams DR and Pyne NJ: Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Prog Lipid Res. 62:93–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sivasubramanian M, Kanagaraj N, Dheen ST and Tay SS: Sphingosine kinase 2 and sphingosine-1-phosphate promotes mitochondrial function in dopaminergic neurons of mouse model of Parkinson's disease and in MPP+-treated MN9D cells in vitro. Neuroscience. 290:636–648. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pyszko J and Strosznajder JB: Sphingosine kinase 1 and sphingosine-1-phosphate in oxidative stress evoked by 1-methyl-4-phenylpyridinium (MPP+) in human dopaminergic neuronal cells. Mol Neurobiol. 50:38–48. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Yu Q, Lai TB, Yang Y, Li G and Sun SG: Effects of small interfering RNA targeting sphingosine kinase-1 gene on the animal model of Alzheimer's disease. J Huazhong Univ Sci Technolog Med Sci. 33:427–432. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wang M, Lv B, Ma R, Hu J, Dun Y, Sun S and Li G: Sphingosine kinase-1 protects differentiated N2a cells against beta-amyloid25-35-induced neurotoxicity via the mitochondrial pathway. Neurochem Res. 39:932–940. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yi H, Lee SJ, Lee J, Myung CS, Park WK, Lim HJ, Lee GH, Kong JY and Cho H: Sphingosylphosphorylcholine attenuated β-amyloid production by reducing BACE1 expression and catalysis in PC12 cells. Neurochem Res. 36:2083–2090. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takasugi N, Sasaki T, Suzuki K, Osawa S, Isshiki H, Hori Y, Shimada N, Higo T, Yokoshima S, Fukuyama T, et al: BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. J Neurosci. 31:6850–6857. 2011. View Article : Google Scholar : PubMed/NCBI | |
Canlas J, Holt P, Carroll A, Rix S, Ryan P, Davies L, Matusica D, Pitson SM, Jessup CF, Gibbins IL, et al: Sphingosine kinase 2-deficiency mediated changes in spinal pain processing. Front Mol Neurosci. 8:292015. View Article : Google Scholar : PubMed/NCBI | |
Hunter SF, Bowen JD and Reder AT: The direct effects of fingolimod in the central nervous system: Implications for relapsing multiple sclerosis. CNS Drugs. 30:135–147. 2016. View Article : Google Scholar : | |
Aurelio L, Scullino CV, Pitman MR, Sexton A, Oliver V, Davies L, Rebello RJ, Furic L, Creek DJ, Pitson SM, et al: From sphingosine kinase to dihydroceramide desaturase: A structure-activity relationship (SAR) study of the enzyme inhibitory and anticancer activity of 4-((4-(4-chlorophenyl)thiazol-2-yl)amino) phenol (SKI-II). J Med Chem. 59:965–984. 2016. View Article : Google Scholar : PubMed/NCBI |