1
|
Knechtle SJ and Kwun J: Unique aspects of
rejection and tolerance in liver transplantation. Semin Liver Dis.
29:91–101. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yoshida O, Dou L, Kimura S, Yokota S, Isse
K, Robson SC, Geller DA and Thomson AW: CD39 deficiency in murine
liver allografts promotes inflammatory injury and immune-mediated
rejection. Transpl Immunol. 32:76–83. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shen ZY, Wu B, Liu T, Yang Y, Yin ML,
Zheng WP, Zhang BY and Song HL: Immunomodulatory effects of bone
marrow mesenchymal stem cells overexpressing heme oxygenase-1:
Protective effects on acute rejection following reduced-size liver
transplantation in a rat model. Cell Immunol. 313:10–24. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Meyers JH, Sabatos CA, Chakravarti S and
Kuchroo VK: The TIM gene family regulates innate and adaptive
immunity. Trends Mol Med. 11:362–269. 2005. View Article : Google Scholar : PubMed/NCBI
|
5
|
Freeman GJ, Casasnovas JM, Umetsu DT and
DeKruyff RH: TIM genes: A family of cell surface phosphatidylserine
receptors that regulate innate and adaptive immunity. Immunol Rev.
235:172–189. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li Z, Ju Z and Frieri M: The T-cell
immunoglobulin and mucin domain (Tim) gene family in asthma,
allergy, and autoimmunity. Allergy Asthma Proc. 34:e21–e262013.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Yeung MY, McGrath M and Najafian N: The
emerging role of the TIM molecules in transplantation. Am J
Transplant. 11:2012–2119. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Baghdadi M, Yoneda A, Yamashina T, Nagao
H, Komohara Y, Nagai S, Akiba H, Foretz M, Yoshiyama H, Kinoshita
I, et al: TIM-4 glycoprotein-mediated degradation of dying tumor
cells by autophagy leads to reduced antigen presentation and
increased immune tolerance. Immunity. 39:1070–1081. 2013.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Rodriguez-Manzanet R, Meyers JH,
Balasubramanian S, Slavik J, Kassam N, Dardalhon V, Greenfield EA,
Anderson AC, Sobel RA, Hafler DA, et al: TIM-4 expressed on APCs
induces T cell expansion and survival. J Immunol. 180:4706–4713.
2008. View Article : Google Scholar : PubMed/NCBI
|
10
|
Meyers JH, Chakravarti S, Schlesinger D,
Illes Z, Waldner H, Umetsu SE, Kenny J, Zheng XX, Umetsu DT,
DeKruyff RH, et al: TIM-4 is the ligand for TIM-1 and the
TIM-1-TIM-4 interaction regulates T cell proliferation. Nat
Immunol. 6:455–464. 2005. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Mizui M, Shikina T, Arase H, Suzuki K,
Yasui T, Rennert PD, Kumanogoh A and Kikutani H: Bimodal regulation
of T cell-mediated immune responses by TIM-4. Int Immunol.
20:695–708. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cao W, Ryan M, Buckley D, O'Connor R and
Clarkson MR: Tim-4 inhibition of T-cell activation and T helper
type 17 differentiation requires both the immunoglobulin V and
mucin domains and occurs via the mitogen-activated protein kinase
pathway. Immunology. 133:179–189. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen Y, Liu Z, Liang S, Luan X, Long F,
Chen J, Peng Y, Yan L and Gong J: Role of Kupffer cells in the
induction of tolerance of orthotopic liver transplantation in rats.
Liver Transpl. 14:823–836. 2008. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ji H, Liu Y, Zhang Y, Shen XD, Gao F,
Busuttil RW, Kuchroo VK and Kupiec-Weglinski JW: T-Cell
immunoglobulin and mucin domain 4 (TIM-4) signaling in innate
immune-mediated liver ischemia-reperfusion injury. Hepatology.
60:2052–2064. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yeung MY, McGrath MM, Nakayama M, Shimizu
T, Boenisch O, Magee CN, Abdoli R, Akiba H, Ueno T, Turka LA and
Najafian N: Interruption of dendritic cell-mediated TIM-4 signaling
induces regulatory T cells and promotes skin allograft survival. J
Immunol. 191:4447–4455. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the Care and Use of Laboratory Animals. 8th
edition. National Academies Press (US); Wasington, DC: 2011
|
17
|
Peng Y, Gong JP, Yan LN, Li SB and Li XH:
Improved two-cuff technique for orthotopic liver transplantation in
rat. Hepatobiliary Pancreat Dis Int. 3:33–37. 2004.PubMed/NCBI
|
18
|
Li PZ, Li JZ, Li M, Gong JP and He K: An
efficient method to isolate and culture mouse Kupffer cells.
Immunol Lett. 158:52–56. 2014. View Article : Google Scholar
|
19
|
Schmittgen TD: Real-time quantitative PCR.
Methods. 25:383–385. 2001. View Article : Google Scholar
|
20
|
No authors listed. Banff schema for
grading liver allograft rejection: An international consensus
document. Hepatology. 25:658–663. 1997. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kitamoto K, Machida Y, Uchida J, Izumi Y,
Shiota M, Nakao T, Iwao H, Yukimura T, Nakatani T and Miura K:
Effects of liposome clodronate on renal leukocyte populations and
renal fibrosis in murine obstructive nephropathy. J Pharmacol Sci.
111:285–292. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ikarashi M, Nakashima H, Kinoshita M, Sato
A, Nakashima M, Miyazaki H, Nishiyama K, Yamamoto J and Seki S:
Distinct development and functions of resident and recruited liver
Kupffer cells/macrophages. J Leukoc Biol. 94:1325–1337. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Stienstra R, Saudale F, Duval C, Keshtkar
S, Groener JE, van Rooijen N, Staels B, Kersten S and Müller M:
Kupffer cells promote hepatic steatosis via
interleukin-1beta-dependent suppression ofperoxisome
proliferator-activated receptor alpha activity. Hepatology.
51:511–22. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Takaki H, Ichiyama K, Kog K, Chinen T,
Takaesu G, Sugiyama Y, Kato S, Yoshimura A and Kobayashi T: STAT6
inhibits TGF-beta1-mediated Foxp3 induction through direct binding
to the Foxp3 promoter, which is reverted by retinoic acid receptor.
J Biol Chem. 283:14955–14962. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhao CQ, Li TL, He SH, Chen X, An YF, Wu
WK, Zhou XH, Li P and Yang PC: Specific immunotherapy suppresses
Th2 responses via modulating TIM1/TIM4 interaction on dendritic
cells. Allergy. 65:986–995. 2010. View Article : Google Scholar
|
26
|
Rong S, Park JK, Kirsch T, Yagita H, Akiba
H, Boenisch O, Haller H, Najafian N and Habicht A: The TIM-1: TIM-4
pathway enhances renal ischemia-reperfusion injury. J Am Soc
Nephrol. 22:484–495. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang M, Xu S, Han Y and Cao X: Apoptotic
cells attenuate fulminant hepatitis by priming Kupffer cells to
produce interleukin-10 through membrane-bound TGF-β. Hepatology.
53:306–316. 2011. View Article : Google Scholar
|
28
|
Chen GS and Qi HZ: Effect of Kupffer cells
on immune tolerance in liver transplantation. Asian Pac J Trop Med.
5:970–972. 2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Tietjen GT, Gong Z, Chen CH, Vargas E,
Crooks JE, Cao KD, Heffern CT, Henderson JM, Meron M, Lin B, et al:
Molecular mechanism for differential recognition of membrane
phosphatidylserine by the immune regulatory receptor Tim4. Proc
Natl Acad Sci USA. 111:E1463–E1472. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kim HS, Lee CW and Chung DH: T cell Ig
domain and mucin 1 engagement on invariant NKT cells in the
presence of TCR stimulation enhances IL-4 production but inhibits
IFN-gamma production. J Immunol. 184:4095–4106. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
van Delft MA, Huitema LF and Tas SW: The
contribution of NF-κB signalling to immune regulation and
tolerance. Eur J Clin Invest. 45:529–539. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu LM, Liang DY, Ye CG, Tu WJ and Zhu T:
The UII/UT system mediates upregulation of proinflammatory
cytokines through p38 MAPK and NF-κB pathway in LPS-stimulated
Kupffer cells. PLoS One. 10:e01213832015. View Article : Google Scholar
|
33
|
Gong XW, Xu YJ, Yang QH, Liang YJ, Zhang
YP, Wang GL and Li YY: Effects of soothing liver and invigorating
spleen recipes on the IKKβ-NF-κB signaling pathway in kupffer cells
of nonalcoholic steatohepatitis rats. Evid Based Complement
Alternat Med. 2015:6876902015. View Article : Google Scholar
|
34
|
Li J and Gong J, Li P, Li M, Liu Y, Liang
S and Gong J: Knockdown of microRNA-155 in Kupffer cells results in
immunosuppressive effects and prolongs survival of mouse liver
allografts. Transplantation. 97:626–635. 2014. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li S, Fan Q, He S, Tang T, Liao Y and Xie
J: MicroRNA-21 negatively regulates Treg cells through a
TGF-β1/Smad-independent pathway in patients with coronary heart
disease. Cell Physiol Biochem. 37:866–878. 2015. View Article : Google Scholar
|
36
|
Tone Y, Furuuchi K, Kojima Y, Tykocinski
ML, Greene MI and Tone M: Smad3 and NFAT cooperate to induce Foxp3
expression through its enhancer. Nat Immunol. 9:194–202. 2008.
View Article : Google Scholar
|
37
|
Dardalhon V, Awasthi A, Kwon H, Galileos
G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, et
al: IL-4 inhibits TGF-beta-induced Foxp3+ T cells and,
together with TGF-beta, generates IL-9+
IL-10+ Foxp3(−) effector T cells. Nat Immunol.
9:1347–1355. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Mantel PY, Kuipers H, Boyman O, Rhyner C,
Ouaked N, Rückert B, Karagiannidis C, Lambrecht BN, Hendriks RW,
Crameri R, et al: GATA3-driven Th2 responses inhibit
TGF-beta1-induced FOXP3 expression and the formation of regulatory
T cells. PLoS Biol. 5:e3292007. View Article : Google Scholar
|
39
|
Faust SM, Lu G, Marini BL, Zou W, Gordon
D, Iwakura Y, Laouar Y and Bishop DK: Role of T cell TGFbeta
signaling and IL-17 in allograft acceptance and fibrosis associated
with chronic rejection. J Immunol. 183:7297–7306. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wei J, Duramad O, Perng OA, Reiner SL, Liu
YJ and Qin FX: Antagonistic nature of T helper 1/2 developmental
programs in opposing peripheral induction of Foxp3+ regulatory T
cells. Proc Natl Acad Sci USA. 104:18169–18174. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhou P, Szot GL, Guo Z, Kim O, He G, Wang
J, Grusby MJ, Newell KA, Thistlethwaite JR, Bluestone JA and Alegre
ML: Role of STAT4 and STAT6 signaling in allograft rejection and
CTLA4-Ig-mediated tolerance. J Immunol. 165:5580–5587. 2000.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Tang LY, Heller M, Meng Z, Yu LR, Tang Y,
Zhou M and Zhang YE: Transforming growth factor-β (TFG-β) directly
activates the JAK1-STAT3 axis to induce hepatic fibrosis in
coordination with SMAD pathway. J Biol Chem. 292:4302–4312. 2017.
View Article : Google Scholar : PubMed/NCBI
|