1
|
Boussageon R, Bejan-Angoulvant T,
Saadatian-Elahi M, Lafont S, Bergeonneau C, Kassaï B, Erpeldinger
S, Wright JM, Gueyffier F and Cornu C: Effect of intensive glucose
lowering treatment on all cause mortality, cardiovascular death,
and micro-vascular events in type 2 diabetes: Meta-analysis of
randomised controlled trials. BMJ. 343:d41692011. View Article : Google Scholar
|
2
|
Hartnett ME, Baehr W and Le YZ: Diabetic
retinopathy, an overview. Vision Res. 139:1–6. 2017. View Article : Google Scholar
|
3
|
García de la Torre N, Fernández-Durango R,
Gómez R, Fuentes M, Roldán-Pallarés M, Donate J, Barabash A, Alonso
B, Runkle I, Durán A, et al: Expression of angiogenic microRNAs in
endothelial progenitor cells from type 1 diabetic patients with and
without diabetic retinopathy. Invest Ophthalmol Vis Sci.
56:4090–4098. 2015. View Article : Google Scholar
|
4
|
Loukovaara S, Gucciardo E, Repo P, Vihinen
H, Lohi J, Jokitalo E, Salven P and Lehti K: Indications of
lymphatic endothelial differentiation and endothelial progenitor
cell activation in the pathology of proliferative diabetic
retinopathy. Acta Ophthalmol. 93:512–523. 2015. View Article : Google Scholar
|
5
|
García-Ramírez M, Turch M, Simó-Servat O,
Hernández C and Simó R: Silymarin prevents diabetes-induced
hyperpermeability in human retinal endothelial cells. Endocrinol
Diabetes Nutr. 65:200–205. 2018.In English, Spanish. View Article : Google Scholar
|
6
|
Choi SH, Chung M, Park SW, Jeon L, Kim JH
and Yu YS: Relationship between pericytes and endothelial cells in
retinal neovascularization: A histological and immunofluorescent
study of retinal angiogenesis. Korean J Ophthalmol. 32:70–76. 2018.
View Article : Google Scholar
|
7
|
Bifulco M: Role of the isoprenoid pathway
in ras transforming activity, cytoskeleton organization, cell
proliferation and apoptosis. Life Sci. 77:1740–1749. 2005.
View Article : Google Scholar
|
8
|
Crick DC, Andres DA and Waechter CJ: Novel
salvage pathway utilizing farnesol and geranylgeraniol for protein
isoprenylation. Biochem Biophys Res Commun. 237:483–487. 1997.
View Article : Google Scholar
|
9
|
Etienne-Manneville S and Hall A: Rho
GTPases in cell biology. Nature. 420:629–635. 2002. View Article : Google Scholar
|
10
|
Lu QY, Chen W, Lu L, Zheng Z and Xu X:
Involvement of RhoA/ROCK1 signaling pathway in
hyperglycemia-induced microvascular endothelial dysfunction in
diabetic retinopathy. Int J Clin Exp Pathol. 7:7268–7277. 2014.
|
11
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar
|
12
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar
|
13
|
McArthur K, Feng B, Wu Y, Chen S and
Chakrabarti S: MicroRNA-200b regulates vascular endothelial growth
factor-mediated alterations in diabetic retinopathy. Diabetes.
60:1314–1323. 2011. View Article : Google Scholar :
|
14
|
Feng B, Chen S, George B, Feng Q and
Chakrabarti S: miR133a regulates cardiomyocyte hypertrophy in
diabetes. Diabetes Metab Res Rev. 26:40–49. 2010. View Article : Google Scholar
|
15
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2−ΔΔC T method. Methods. 25:402–408.
2001. View Article : Google Scholar
|
16
|
Á Castilho, Madsen E, Ambrósio AF, Veruki
ML and Hartveit E: Diabetic hyperglycemia reduces Ca2+
permeability of extrasynaptic AMPA receptors in AII amacrine cells.
J Neurophysiol. 114:1545–1553. 2015. View Article : Google Scholar
|
17
|
Baptista FI, ÁF Castilho, Gaspar JM,
Liberal JT, Aveleira CA and Ambrósio AF: Long-term exposure to high
glucose increases the content of several exocytotic proteins and of
vesicular GABA transporter in cultured retinal neural cells.
Neurosci Lett. 602:56–61. 2015. View Article : Google Scholar
|
18
|
Yau JW, Rogers SL, Kawasaki R, Lamoureux
EL, Kowalski JW, Bek T, Chen SJ, Dekker JM, Fletcher A, Grauslund
J, et al: Global prevalence and major risk factors of diabetic
retinopathy. Diabetes Care. 35:556–564. 2012. View Article : Google Scholar
|
19
|
Zhen Y, Liu J, Huang Y, Wang Y, Li W and
Wu J: miR-133b inhibits cell growth, migration, and invasion by
targeting MMP9 in non-small cell lung cancer. Oncol Res.
25:1109–1116. 2017. View Article : Google Scholar
|
20
|
Cheng Y, Jia B, Wang Y and Wan S: miR-133b
acts as a tumor suppressor and negatively regulates ATP citrate
lyase via PPARgamma in gastric cancer. Oncol Rep. 38:3220–3226.
2017. View Article : Google Scholar
|
21
|
Li H, Xiang Z, Liu Y, Xu B and Tang J:
MicroRNA-133b inhibits proliferation, cellular migration, and
invasion via targeting LASP1 in hepatocarcinoma cells. Oncol Res.
25:1269–1282. 2017. View Article : Google Scholar
|
22
|
Zilberman Y, Alieva NO, Miserey-Lenkei S,
Lichtenstein A, Kam Z, Sabanay H and Bershadsky A: Involvement of
the Rho-mDia1 pathway in the regulation of Golgi complex
architecture and dynamics. Mol Biol Cell. 22:2900–2911. 2011.
View Article : Google Scholar :
|
23
|
Kiss C, Li J, Szeles A, Gizatullin RZ,
Kashuba VI, Lushnikova T, Protopopov AI, Kelve M, Kiss H,
Kholodnyuk ID, et al: Assignment of the ARHA and GPX1 genes to
human chromosome bands 3p213 by in situ hybridization and with
somatic cell hybrids. Cytogenet Cell Genet. 79:228–230. 1997.
View Article : Google Scholar
|
24
|
Ruiz-Loredo AY, López E and López-Colomé
AM: Thrombin promotes actin stress fiber formation in RPE through
Rho/ROCK-mediated MLC phosphorylation. J Cell Physiol. 226:414–423.
2011. View Article : Google Scholar
|
25
|
Miñambres R, Guasch RM, Perez-Aragó A and
Guerri C: The RhoA/ROCK-I/MLC pathway is involved in the
ethanol-induced apoptosis by anoikis in astrocytes. J Cell Sci.
119:271–282. 2006. View Article : Google Scholar
|
26
|
Lu XC, Zheng JY, Tang LJ, Huang BS, Li K,
Tao Y, Yu W, Zhu RL, Li S and Li LX: MiR-133b Promotes neurite
outgrowth by targeting RhoA expression. Cell Physiol Biochem.
35:246–258. 2015. View Article : Google Scholar
|